892 resultados para Fire Simulator
Resumo:
Mestrado Mediterranean Forestry and Natural Resources Management - Instituto Superior de Agronomia - UL
Resumo:
The Chihuahua desert is one of the most biologically diverse ecosystems in the world, but suffers serious degradation because of changes in fire regimes resulting in large catastrophic fires. My study was conducted in the Sierra La Mojonera (SLM) natural protected area in Mexico. The purpose of this study was to implement the use of FARSITE fire modeling as a fire management tool to develop an integrated fire management plan at SLM. Firebreaks proved to detain 100% of wildfire outbreaks. The rosetophilous scrub experienced the fastest rate of fire spread and lowland creosote bush scrub experienced the slowest rate of fire spread. March experienced the fastest rate of fire spread, while September experienced the slowest rate of fire spread. The results of my study provide a tool for wildfire management through the use geospatial technologies and, in particular, FARSITE fire modeling in SLM and Mexico.
Resumo:
The FIRE Detection and Suppression Simulation (FIREDASS) project was concerned with the development of water misting systems as a possible replacement for halon based fire suppression systems currently used in aircraft cargo holds and ship engine rooms. As part of this program of work, a computational model was developed to assist engineers optimize the design of water mist suppression systems. The model is based on Computational Fluid Dynamics (CFD) and comprised of the following components: fire model; mist model; two-phase radiation model; suppression model; detector/activation model. In this paper the FIREDASS software package is described and the theory behind the fire and radiation sub-models is detailed. The fire model uses prescribed release rates for heat and gaseous combustion products to represent the fire load. Typical release rates have been determined through experimentation. The radiation model is a six-flux model coupled to the gas (and mist) phase. As part of the FIREDASS project, a detailed series of fire experiments were conducted in order to validate the fire model. Model predictions are compared with data from these experiments and good agreement is found.
Resumo:
"August 1963."
Resumo:
Numerical study is carried out using large eddy simulation to study the heat and toxic gases released from fires in real road tunnels. Due to disasters about tunnel fires in previous decade, it attracts increasing attention of researchers to create safe and reliable ventilation designs. In this research, a real tunnel with 10 MW fire (which approximately equals to the heat output speed of a burning bus) at the middle of tunnel is simulated using FDS (Fire Dynamic Simulator) for different ventilation velocities. Carbone monoxide concentration and temperature vertical profiles are shown for various locations to explore the flow field. It is found that, with the increase of the longitudinal ventilation velocity, the vertical profile gradients of CO concentration and smoke temperature were shown to be both reduced. However, a relatively large longitudinal ventilation velocity leads to a high similarity between the vertical profile of CO volume concentration and that of temperature rise.
Resumo:
Lo sviluppo di un incendio all’interno di depositi di liquidi infiammabili costituisce uno scenario particolarmente critico a causa della rilevanza delle conseguenze che ne possono scaturire. L’incendio causato dalla formazione di grandi pozze sviluppatesi a seguito di forature dei contenitori e il rapido coinvolgimento di tutto lo stoccaggio rappresentano uno scenario di incendio tipico di queste realtà. Si ha quindi la necessità di adottare provvedimenti atti a garantire specifici obiettivi di sicurezza tramite l’introduzione di misure antincendio. La prevenzione incendi, sino al 2007, era basata esclusivamente su norme di tipo prescrittivo, in base alle quali si definivano le misure di sicurezza secondo un criterio qualitativo. Successivamente l’ingegneria antincendio si è sempre più caratterizzata da approcci basati su analisi di tipo prestazionale, in grado di dimostrare il raggiungimento dell’obiettivo di sicurezza sulla base del comportamento reale d’incendio ottenuto mediante un’accurata simulazione del fuoco che ragionevolmente può prodursi nell'attività. La modellazione degli incendi è divenuta possibile grazie allo sviluppo di codici di fluidodinamica computazionale (CFD), in grado di descrivere accuratamente l’evoluzione delle fiamme. Il presente studio si inserisce proprio nell’ambito della modellazione CFD degli incendi, eseguita mediante il software Fire Dynamics Simulator (FDS). L’obiettivo dell’elaborato è studiare l’azione dell’impianto di spegnimento a schiuma sullo sviluppo di un incendio di pozza in un deposito di liquidi infiammabili, in termini di riduzione della potenza termica rilasciata dal fuoco, al fine di determinare le temperature massime raggiunte, in corrispondenza delle quali valutare il comportamento di resistenza strutturale degli edifici. Il presente lavoro è articolato in 6 capitoli. Dopo il Capitolo 1, avente carattere introduttivo, vengono richiamati nel Capitolo 2 i principali concetti della chimica e fisica degli incendi. Nel Capitolo 3 vengono esaminate le normative intese ad unificare l’approccio ingegneristico alla sicurezza antincendio. Il Capitolo 4 fornisce una dettagliata descrizione del software di calcolo, FDS - Fire Dynamics Simulator, adoperato per la modellazione dell’incendio. Nel Capitolo 5 si procede alla progettazione prestazionale che conduce alla determinazione della curva naturale d'incendio in presenza degli impianti di spegnimento automatici. Infine nel Capitolo 6 si riportano le considerazioni conclusive.
Resumo:
An experimental and numerical study of turbulent fire suppression is presented. For this work, a novel and canonical facility has been developed, featuring a buoyant, turbulent, methane or propane-fueled diffusion flame suppressed via either nitrogen dilution of the oxidizer or application of a fine water mist. Flames are stabilized on a slot burner surrounded by a co-flowing oxidizer, which allows controlled delivery of either suppressant to achieve a range of conditions from complete combustion through partial and total flame quenching. A minimal supply of pure oxygen is optionally applied along the burner to provide a strengthened flame base that resists liftoff extinction and permits the study of substantially weakened turbulent flames. The carefully designed facility features well-characterized inlet and boundary conditions that are especially amenable to numerical simulation. Non-intrusive diagnostics provide detailed measurements of suppression behavior, yielding insight into the governing suppression processes, and aiding the development and validation of advanced suppression models. Diagnostics include oxidizer composition analysis to determine suppression potential, flame imaging to quantify visible flame structure, luminous and radiative emissions measurements to assess sooting propensity and heat losses, and species-based calorimetry to evaluate global heat release and combustion efficiency. The studied flames experience notable suppression effects, including transition in color from bright yellow to dim blue, expansion in flame height and structural intermittency, and reduction in radiative heat emissions. Still, measurements indicate that the combustion efficiency remains close to unity, and only near the extinction limit do the flames experience an abrupt transition from nearly complete combustion to total extinguishment. Measurements are compared with large eddy simulation results obtained using the Fire Dynamics Simulator, an open-source computational fluid dynamics software package. Comparisons of experimental and simulated results are used to evaluate the performance of available models in predicting fire suppression. Simulations in the present configuration highlight the issue of spurious reignition that is permitted by the classical eddy-dissipation concept for modeling turbulent combustion. To address this issue, simple treatments to prevent spurious reignition are developed and implemented. Simulations incorporating these treatments are shown to produce excellent agreement with the experimentally measured data, including the global combustion efficiency.
Resumo:
Fire design is an essential element of the overall design procedure of structural steel members and systems. Conventionally the fire rating of load-bearing stud wall systems made of light gauge steel frames (LSF) is based on approximate prescriptive methods developed on the basis of limited fire tests. This design is limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to the stud walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these light gauge steel stud wall systems. Hence a detailed fire research study into the performance and effectiveness of a recently developed innovative composite panel wall system was undertaken at Queensland University of Technology using both full scale fire tests and numerical studies. Experimental results of LSF walls using the new composite panels under axial compression load have shown the improvement in fire performance and fire resistance rating. Numerical analyses are currently being undertaken using the finite element program ABAQUS. Measured temperature profiles of the studs are used in the numerical models and the results are used to calibrate against full scale test results. The validated model will be used in a detailed parametric study with an aim to develop suitable design rules within the current cold-formed steel structures and fire design standards. This paper will present the results of experimental and numerical investigations into the structural and fire behaviour of light gauge steel stud walls protected by the new composite panel. It will demonstrate the improvements provided by the new composite panel system in comparison to traditional wall systems.
Resumo:
The work was derived from terrestrial laser scan data of a bio-diverse landscape on the SE coast of Western Australia. The scanning was conducted both before and after a significant bushfire event. The digital three dimensional scan data has been converged and then abstracted into a two dimensional vertical sections or slice which reveals the vegetal surface of heath vegetation and the surface of the landform.---------- This abstraction converts the complex data into spatial information so that it is meaningful in the context the architectural and landscape architectural design process. The primary intention behind the production of the work was to expand understanding on the means of representing and then designing for sites in ‘kwongan’ landscapes which are constituted by highly biodiverse, bushfire prone heath vegetation.