999 resultados para Finite Domination
Resumo:
Suppose C is a bounded chain complex of finitely generated free modules over the Laurent polynomial ring L = R[x,x -1]. Then C is R-finitely dominated, i.e. homotopy equivalent over R to a bounded chain complex of finitely generated projective R-modules if and only if the two chain complexes C ? L R((x)) and C ? L R((x -1)) are acyclic, as has been proved by Ranicki (A. Ranicki, Finite domination and Novikov rings, Topology 34(3) (1995), 619–632). Here R((x)) = R[[x]][x -1] and R((x -1)) = R[[x -1]][x] are rings of the formal Laurent series, also known as Novikov rings. In this paper, we prove a generalisation of this criterion which allows us to detect finite domination of bounded below chain complexes of projective modules over Laurent rings in several indeterminates.
Resumo:
Let C be a bounded cochain complex of finitely generatedfree modules over the Laurent polynomial ring L = R[x, x−1, y, y−1].The complex C is called R-finitely dominated if it is homotopy equivalentover R to a bounded complex of finitely generated projective Rmodules.Our main result characterises R-finitely dominated complexesin terms of Novikov cohomology: C is R-finitely dominated if andonly if eight complexes derived from C are acyclic; these complexes areC ⊗L R[[x, y]][(xy)−1] and C ⊗L R[x, x−1][[y]][y−1], and their variants obtainedby swapping x and y, and replacing either indeterminate by its inverse.
Resumo:
We present an algebro-geometric approach to a theorem on finite domination of chain complexes over a Laurent polynomial ring. The approach uses extension of chain complexes to sheaves on the projective line, which is governed by a K-theoretical obstruction.
Resumo:
We present a homological characterisation of those chain complexes of modules over a Laurent polynomial ring in several indeterminates which are finitely dominated over the ground ring (that is, are a retract up to homotopy of a bounded complex of finitely generated free modules). The main tools, which we develop in the paper, are a non-standard totalisation construction for multi-complexes based on truncated products, and a high-dimensional mapping torus construction employing a theory of cubical diagrams that commute up to specified coherent homotopies.
Resumo:
Let L be a unital Z-graded ring, and let C be a bounded chain complex of finitely generated L-modules. We give a homological characterisation of when C is homotopy equivalent to a bounded complex of finitely generated projective L0-modules, generalising known results for twisted Laurent polynomial rings. The crucial hypothesis is that L is a strongly graded ring.
Resumo:
2010 Mathematics Subject Classification: Primary 18G35; Secondary 55U15.
Resumo:
An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.