953 resultados para Filtro de Kalman-Bucy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo central deste trabalho é o estudo e a aplicação do método Kalman-Bucy no processo de deconvolução ao impulso e de deconvolução com predição, onde é considerado que os dados observados são classificados como não-estacionários. Os dados utilizados neste trabalho são sintéticos e, com isto, esta Tese tem características de um exercício numérico e investigativo. O operador de deconvolução ao impulso é obtido a partir da teoria de CRUMP (1974) fazendo uso das soluções das equações Wiener-Hopf apresentadas por KALMAN-BUCY (1961) nas formas contínuas e discretas considerando o processo como não estacionário. O operador de predição (KBCP) está baseado nas teorias de CRUMP (1974) e MENDEL ET AL (1979). Sua estrutura assemelha-se ao filtro Wiener-Hopf onde os coeficientes do operador (WHLP) são obtidos através da autocorrelação, e no caso (KBCP) são obtidos a partir da função bi(k). o problema é definido em duas etapas: a primeira consta da geração do sinal, e a segunda da sua avaliação. A deconvolução realizada aqui é classificada como estatística, e é um modelo fortemente baseado nas propriedades do sinal registrado e de sua representação. Os métodos foram aplicados apenas em dados sintéticos de seção fonte-comum obtida a partir dos modelos com interfaces contínuas e camadas homogêneas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El déficit existente a nuestro país con respecto a la disponibilidad de indicadores cuantitativos con los que llevar a término un análisis coyuntural de la actividad industrial regional ha abierto un debate centrado en el estudio de cuál es la metodología más adecuada para elaborar indicadores de estas características. Dentro de este marco, en este trabajo se presentan las principales conclusiones obtenidas en anteriores estudios (Clar, et. al., 1997a, 1997b y 1998) sobre la idoneidad de extender las metodologías que actualmente se están aplicando a las regiones españolas para elaborar indicadores de la actividad industrial mediante métodos indirectos. Estas conclusiones llevan a plantear una estrategia distinta a las que actualmente se vienen aplicando. En concreto, se propone (siguiendo a Israilevich y Kuttner, 1993) un modelo de variables latentes para estimar el indicador de la producción industrial regional. Este tipo de modelo puede especificarse en términos de un modelo statespace y estimarse mediante el filtro de Kalman. Para validar la metodología propuesta se estiman unos indicadores de acuerdo con ella para tres de las cuatro regiones españolas que disponen d¿un Índice de Producción Industrial (IPI) elaborado mediante el método directo (Andalucía, Asturias y el País Vasco) y se comparan con los IPIs publicados (oficiales). Los resultados obtenidos muestran el buen comportamiento de l¿estrategia propuesta, abriendo así una línea de trabajo con la que subsanar el déficit al que se hacía referencia anteriormente

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El déficit existente a nuestro país con respecto a la disponibilidad de indicadores cuantitativos con los que llevar a término un análisis coyuntural de la actividad industrial regional ha abierto un debate centrado en el estudio de cuál es la metodología más adecuada para elaborar indicadores de estas características. Dentro de este marco, en este trabajo se presentan las principales conclusiones obtenidas en anteriores estudios (Clar, et. al., 1997a, 1997b y 1998) sobre la idoneidad de extender las metodologías que actualmente se están aplicando a las regiones españolas para elaborar indicadores de la actividad industrial mediante métodos indirectos. Estas conclusiones llevan a plantear una estrategia distinta a las que actualmente se vienen aplicando. En concreto, se propone (siguiendo a Israilevich y Kuttner, 1993) un modelo de variables latentes para estimar el indicador de la producción industrial regional. Este tipo de modelo puede especificarse en términos de un modelo statespace y estimarse mediante el filtro de Kalman. Para validar la metodología propuesta se estiman unos indicadores de acuerdo con ella para tres de las cuatro regiones españolas que disponen d¿un Índice de Producción Industrial (IPI) elaborado mediante el método directo (Andalucía, Asturias y el País Vasco) y se comparan con los IPIs publicados (oficiales). Los resultados obtenidos muestran el buen comportamiento de l¿estrategia propuesta, abriendo así una línea de trabajo con la que subsanar el déficit al que se hacía referencia anteriormente

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tasa de paro de inflación estable (NAIRU) describe aquella tasa de desempleo que se alcanza en el equilibrio entre las reivindicaciones salariales de los trabajadores y los objetivos de beneficio de las empresas. En este trabajo se desarrolla un enfoque teórico general que permite determinar el nivel de la NAIRU. Esta cuestión adquiere una especial trascendencia teórica y empírica si se tiene en cuenta que esta tasa de paro de equilibrio ha aumentado en la mayoría de países europeos. Sin embargo, esta tasa de paro de equilibrio no puede observarse directamente por lo que se recurre a su estimación econométrica a partir del filtro de Kalman. Para ilustrar la potencialidad del modelo desarrollado y la influencia de la determinadas variables relacionadas con la distribución de las rentas salariales, se analiza cual ha sido la evolución de la NAIRU para la economía española en el periodo 1964-2004.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a recent paper, Vathsal suggested that a new configuration had been obtained for linear filtering problems, which was distinctly different from the Kalman-Bucy filter. It is shown that this in fact is merely a special case of the filter with a specified input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn’t represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two recent works have adapted the Kalman–Bucy filter into an ensemble setting. In the first formulation, the ensemble of perturbations is updated by the solution of an ordinary differential equation (ODE) in pseudo-time, while the mean is updated as in the standard Kalman filter. In the second formulation, the full ensemble is updated in the analysis step as the solution of single set of ODEs in pseudo-time. Neither requires matrix inversions except for the frequently diagonal observation error covariance. We analyse the behaviour of the ODEs involved in these formulations. We demonstrate that they stiffen for large magnitudes of the ratio of background error to observational error variance, and that using the integration scheme proposed in both formulations can lead to failure. A numerical integration scheme that is both stable and is not computationally expensive is proposed. We develop transform-based alternatives for these Bucy-type approaches so that the integrations are computed in ensemble space where the variables are weights (of dimension equal to the ensemble size) rather than model variables. Finally, the performance of our ensemble transform Kalman–Bucy implementations is evaluated using three models: the 3-variable Lorenz 1963 model, the 40-variable Lorenz 1996 model, and a medium complexity atmospheric general circulation model known as SPEEDY. The results from all three models are encouraging and warrant further exploration of these assimilation techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Busca-se como objetivo geral, através da estimação de uma equação de demanda por moeda de longo prazo para o Brasil, período 1980-2001, testar a sua estabilidade, o que implica analisar a evolução dos coeficientes ao longo do tempo, bem como mensurar o desempenho acerca do grau de previsibilidade de demanda futura por encaixes reais, comparando sua eficiência no prognóstico com aquelas que se obteriam utilizando técnicas de estimação Mínimos Quadrados Ordinários (MQO) e Mínimos Quadrados Ordinários Recursivos (MQOR), ambas de caráter não adaptativo. Além disso, como resultado da análise percuciente das trajetórias dos parâmetros, a política monetária exercida no período é recuperada. Os resultados rejeitam a hipótese nula de estabilidade da demanda de moeda, encontrando-se que os parâmetros apresentam flutuações importantes não ilustradas pelo procedimento MQO, tendo se destacado o período 1986-1992 como o mais instável. Como era de se esperar, nos testes de capacidade de previsão, a estimação por meio do Filtro de Kalman supera as demais técnicas, evidenciando a ocorrência de mudanças nos regimes de política.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação pretende discutir a provisão de sinistros do tipo IBNR, bem como qual a melhor forma de estimar estas provisões. Para tanto, serão utilizados dados reais de uma grande seguradora Brasileira para um produto de seguro de um ramo Não Vida. Serão utilizados no cálculo o clássico método Chain Ladder e em contrapartida um modelo de Espaço de Estados e Filtro de Kalman, discutindo as flexibilidades, vantagens e desvantagens de se utilizar tal metodologia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho tem o objetivo de testar a qualidade preditiva do Modelo Vasicek de dois fatores acoplado ao Filtro de Kalman. Aplicado a uma estratégia de investimento, incluímos um critério de Stop Loss nos períodos que o modelo não responde de forma satisfatória ao movimento das taxas de juros. Utilizando contratos futuros de DI disponíveis na BMFBovespa entre 01 de março de 2007 a 30 de maio de 2014, as simulações foram realizadas em diferentes momentos de mercado, verificando qual a melhor janela para obtenção dos parâmetros dos modelos, e por quanto tempo esses parâmetros estimam de maneira ótima o comportamento das taxas de juros. Os resultados foram comparados com os obtidos pelo Modelo Vetor-auto regressivo de ordem 1, e constatou-se que o Filtro de Kalman aplicado ao Modelo Vasicek de dois fatores não é o mais indicado para estudos relacionados a previsão das taxas de juros. As limitações desse modelo o restringe em conseguir estimar toda a curva de juros de uma só vez denegrindo seus resultados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the study, computer simulation and feasibility of implementation of vector control speed of an induction motor using for this purpose the Extended Kalman Filter as an estimator of rotor flux. The motivation for such work is the use of a control system that requires no sensors on the machine shaft, thus providing a considerable cost reduction of drives and their maintenance, increased reliability, robustness and noise immunity as compared to control systems with conventional sensors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O filtro de Kalman é aplicado para filtragem inversa ou problema de deconvolução. Nesta dissertação aplicamos o método de Kalman, considerado como uma outra visão de processamento no domínio do tempo, para separar sinal-ruído em perfil sônico admitido como uma realização de um processo estocástico não estacionário. Em um trabalho futuro estudaremos o problema da deconvolução. A dedução do filtro de Kalman destaca a relação entre o filtro de Kalman e o de Wiener. Estas deduções são baseadas na representação do sistema por variáveis de estado e modelos de processos aleatórios, com a entrada do sistema linear acrescentado com ruído branco. Os resultados ilustrados indicam a aplicabilidade dessa técnica para uma variedade de problemas de processamento de dados geofísicos, por exemplo, ideal para well log. O filtro de Kalman oferece aos geofísicos de exploração informações adicionais para o processamento, problemas de modelamento e a sua solução.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’analisi del movimento ha acquisito, soprattutto negli ultimi anni, un ruolo fondamentale in ambito terapeutico e riabilitativo. Infatti una dettagliata analisi del movimento di un paziente permette la formulazione di diagnosi dettagliate e l’adozione di un adeguato trattamento terapeutico. Inoltre sistemi di misura del movimento sono utilizzati anche in ambito sportivo, ad esempio come strumento di supporto per il miglioramento delle prestazioni e la prevenzione dell’infortunio. La cinematica è la branca della biomeccanica che si occupa di studiare il movimento, senza indagare le cause che lo generano e richiede la conoscenza delle variabili cinematiche caratteristiche. Questa tesi si sviluppa nell’ambito dell’analisi della cinematica articolare per gli arti inferiori durante il cammino, mediante l’utilizzo di Unità di Misura Magnetico-Inerziali, o IMMU, che consistono nella combinazione di sensori inerziali e magnetici. I dati in uscita da accelerometri, giroscopi e magnetometri vengono elaborati mediante un algoritmo ricorsivo, il filtro di Kalman, che fornisce una stima dell’orientamento del rilevatore nel sistema di riferimento globale. Lo scopo di questa tesi è quello di ottimizzare il valore del guadagno del filtro di Kalman, utilizzando un algoritmo open-source implementato da Madgwick. Per ottenere il valore ottimale è stato acquisito il cammino di tre soggetti attraverso IMMU e contemporaneamente tramite stereofotogrammetria, considerata come gold standard. Il valore del guadagno che permette una vicinanza maggiore con il gold standard viene considerato il valore ottimale da utilizzare per la stima della cinematica articolare.