976 resultados para Filtering techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While current speech recognisers give acceptable performance in carefully controlled environments, their performance degrades rapidly when they are applied in more realistic situations. Generally, the environmental noise may be classified into two classes: the wide-band noise and narrow band noise. While the multi-band model has been shown to be capable of dealing with speech corrupted by narrow-band noise, it is ineffective for wide-band noise. In this paper, we suggest a combination of the frequency-filtering technique with the probabilistic union model in the multi-band approach. The new system has been tested on the TIDIGITS database, corrupted by white noise, noise collected from a railway station, and narrow-band noise, respectively. The results have shown that this approach is capable of dealing with noise of narrow-band or wide-band characteristics, assuming no knowledge about the noisy environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a novel framework for automatic segmentation of primary tumors and its boundary from brain MRIs using morphological filtering techniques. This method uses T2 weighted and T1 FLAIR images. This approach is very simple, more accurate and less time consuming than existing methods. This method is tested by fifty patients of different tumor types, shapes, image intensities, sizes and produced better results. The results were validated with ground truth images by the radiologist. Segmentation of the tumor and boundary detection is important because it can be used for surgical planning, treatment planning, textural analysis, 3-Dimensional modeling and volumetric analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last few years a state-space formulation has been introduced into self-tuning control. This has not only allowed for a wider choice of possible control actions, but has also provided an insight into the theory underlying—and hidden by—that used in the polynomial description. This paper considers many of the self-tuning algorithms, both state-space and polynomial, presently in use, and by starting from first principles develops the observers which are, effectively, used in each case. At any specific time instant the state estimator can be regarded as taking one of two forms. In the first case the most recently available output measurement is excluded, and here an optimal and conditionally stable observer is obtained. In the second case the present output signal is included, and here it is shown that although the observer is once again conditionally stable, it is no longer optimal. This result is of significance, as many of the popular self-tuning controllers lie in the second, rather than first, category.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Image filtering techniques have numerous potential applications in biomedical imaging and image processing. The design of filters largely depends on the a-priori knowledge about the type of noise corrupting the image and image features. This makes the standard filters to be application and image specific. The most popular filters such as average, Gaussian and Wiener reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design filters based on discrete cosine transform (DCT) is proposed in this study for optimal medical image filtering. This algorithm exploits the better energy compaction property of DCT and re-arrange these coefficients in a wavelet manner to get the better energy clustering at desired spatial locations. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study considers linear filtering methods for minimising the end-to-end average distortion of a fixed-rate source quantisation system. For the source encoder, both scalar and vector quantisation are considered. The codebook index output by the encoder is sent over a noisy discrete memoryless channel whose statistics could be unknown at the transmitter. At the receiver, the code vector corresponding to the received index is passed through a linear receive filter, whose output is an estimate of the source instantiation. Under this setup, an approximate expression for the average weighted mean-square error (WMSE) between the source instantiation and the reconstructed vector at the receiver is derived using high-resolution quantisation theory. Also, a closed-form expression for the linear receive filter that minimises the approximate average WMSE is derived. The generality of framework developed is further demonstrated by theoretically analysing the performance of other adaptation techniques that can be employed when the channel statistics are available at the transmitter also, such as joint transmit-receive linear filtering and codebook scaling. Monte Carlo simulation results validate the theoretical expressions, and illustrate the improvement in the average distortion that can be obtained using linear filtering techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved. This paper describes the development of detection algorithms and the evaluation of a real-time flight ready hardware implementation of a vision-based collision detection system suitable for fixed-wing small/medium size UAS. In particular, this paper demonstrates the use of Hidden Markov filter to track and estimate the elevation (β) and bearing (α) of the target, compares several candidate graphic processing hardware choices, and proposes an image based visual servoing approach to achieve collision avoidance

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a new rat animat, a rat-sized bio-inspired robot platform currently being developed for embodied cognition and neuroscience research. The rodent animat is 150mm x 80mm x 70mm and has a different drive, visual, proximity, and odometry sensors, x86 PC, and LCD interface. The rat animat has a bio-inspired rodent navigation and mapping system called RatSLAM which demonstrates the capabilities of the platform and framework. A case study is presented of the robot's ability to learn the spatial layout of a figure of eight laboratory environment, including its ability to close physical loops based on visual input and odometry. A firing field plot similar to rodent 'non-conjunctive grid cells' is shown by plotting the activity of an internal network. Having a rodent animat the size of a real rat allows exploration of embodiment issues such as how the robot's sensori-motor systems and cognitive abilities interact. The initial observations concern the limitations of the deisgn as well as its strengths. For example, the visual sensor has a narrower field of view and is located much closer to the ground than for other robots in the lab, which alters the salience of visual cues and the effectiveness of different visual filtering techniques. The small size of the robot relative to corridors and open areas impacts on the possible trajectories of the robot. These perspective and size issues affect the formation and use of the cognitive map, and hence the navigation abilities of the rat animat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the flight trials of an electro-optical (EO) sense-and-avoid system onboard a Cessna host aircraft (camera aircraft). We focus on the autonomous collision avoidance capability of the sense-and-avoid system; that is, closed-loop integration with the onboard aircraft autopilot. We also discuss the system’s approach to target detection and avoidance control, as well as the methodology of the flight trials. The results demonstrate the ability of the sense-and-avoid system to automatically detect potential conflicting aircraft and engage the host Cessna autopilot to perform an avoidance manoeuvre, all without any human intervention

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whole-image descriptors such as GIST have been used successfully for persistent place recognition when combined with temporal filtering or sequential filtering techniques. However, whole-image descriptor localization systems often apply a heuristic rather than a probabilistic approach to place recognition, requiring substantial environmental-specific tuning prior to deployment. In this paper we present a novel online solution that uses statistical approaches to calculate place recognition likelihoods for whole-image descriptors, without requiring either environmental tuning or pre-training. Using a real world benchmark dataset, we show that this method creates distributions appropriate to a specific environment in an online manner. Our method performs comparably to FAB-MAP in raw place recognition performance, and integrates into a state of the art probabilistic mapping system to provide superior performance to whole-image methods that are not based on true probability distributions. The method provides a principled means for combining the powerful change-invariant properties of whole-image descriptors with probabilistic back-end mapping systems without the need for prior training or system tuning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes new techniques for aircraft shape estimation, passive ranging, and shape-adaptive hidden Markov model filtering which are suitable for a monocular vision-based non-cooperative collision avoidance system. Vision-based passive ranging is an important missing technology that could play a significant role in resolving the sense-and-avoid problem in un-manned aerial vehicles (UAVs); a barrier hindering the wider adoption of UAVs for civilian applications. The feasibility of the pro- posed shape estimation, passive ranging and shape-adaptive filtering techniques is evaluated on flight test data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atrial fibrillation (AF) is the most common tachyarrhythmia and is associated with substantial morbidity, increased mortality and cost. The treatment modalities of AF have increased, but results are still far from optimal. More individualized therapy may be beneficial. Aiming for this calls improved diagnostics. Aim of this study was to find non-invasive parameters obtained during sinus rhythm reflecting electrophysiological patterns related to propensity to AF and particularly to AF occurring without any associated heart disease, lone AF. Overall 240 subjects were enrolled, 136 patients with paroxysmal lone AF and 104 controls (mean age 45 years, 75% males). Signal measurements were performed by non-invasive magnetocardiography (MCG) and by invasive electroanatomic mapping (EAM). High-pass filtering techniques and a new method based on a surface gradient technique were adapted to analyze atrial MCG signal. The EAM was used to elucidate atrial activation in patients and as a reference for MCG. The results showed that MCG mapping is an accurate method to detect atrial electrophysiologic properties. In lone paroxysmal AF, duration of the atrial depolarization complex was marginally prolonged. The difference was more obvious in women and was also related to interatrial conduction patterns. In the focal type of AF (75%), the root mean square (RMS) amplitudes of the atrial signal were normal, but in AF without demonstrable triggers the late atrial RMS amplitudes were reduced. In addition, the atrial characteristics tended to remain similar even when examined several years after the first AF episodes. The intra-atrial recordings confirmed the occurrence of three distinct sites of electrical connection from right to left atrium (LA): the Bachmann bundle (BB), the margin of the fossa ovalis (FO), and the coronary sinus ostial area (CS). The propagation of atrial signal could also be evaluated non-invasively. Three MCG atrial wave types were identified, each of which represented a distinct interatrial activation pattern. In conclusion, in paroxysmal lone AF, active focal triggers are common, atrial depolarization is slightly prolonged, but with a normal amplitude, and the arrhythmia does not necessarily lead to electrical or mechanical dysfunction of the atria. In women the prolongation of atrial depolarization is more obvious. This may be related to gender differences in presentation of AF. A significant minority of patients with lone AF lack frequent focal triggers, and in them, the late atrial signal amplitude is reduced, possibly signifying a wider degenerative process in the LA. In lone AF, natural impulse propagation to LA during sinus rhythm goes through one or more of the principal pathways described. The BB is the most common route, but in one-third, the earliest LA activation occurs outside the BB. Susceptibility to paroxysmal lone AF is associated with propagation of the atrial signal via the margin of the FO or via multiple pathways. When conduction occurs via the BB, it is related with prolonged atrial activation. Thus, altered and alternative conduction pathways may contribute to pathogenesis of lone AF. There is growing evidence of variability in genesis of AF also within lone paroxysmal AF. Present study suggests that this variation may be reflected in cardiac signal pattern. Recognizing the distinct signal profiles may assist in understanding the pathogenesis of AF and identifying subgroups for patient-tailored therapy.