894 resultados para Filtering
Resumo:
It is a big challenge to clearly identify the boundary between positive and negative streams. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on RCV1, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
Over the years, people have often held the hypothesis that negative feedback should be very useful for largely improving the performance of information filtering systems; however, we have not obtained very effective models to support this hypothesis. This paper, proposes an effective model that use negative relevance feedback based on a pattern mining approach to improve extracted features. This study focuses on two main issues of using negative relevance feedback: the selection of constructive negative examples to reduce the space of negative examples; and the revision of existing features based on the selected negative examples. The former selects some offender documents, where offender documents are negative documents that are most likely to be classified in the positive group. The later groups the extracted features into three groups: the positive specific category, general category and negative specific category to easily update the weight. An iterative algorithm is also proposed to implement this approach on RCV1 data collections, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).
Resumo:
Collaborative tagging can help users organize, share and retrieve information in an easy and quick way. For the collaborative tagging information implies user’s important personal preference information, it can be used to recommend personalized items to users. This paper proposes a novel tag-based collaborative filtering approach for recommending personalized items to users of online communities that are equipped with tagging facilities. Based on the distinctive three dimensional relationships among users, tags and items, a new similarity measure method is proposed to generate the neighborhood of users with similar tagging behavior instead of similar implicit ratings. The promising experiment result shows that by using the tagging information the proposed approach outperforms the standard user and item based collaborative filtering approaches.
Resumo:
The social tags in web 2.0 are becoming another important information source to profile users' interests and preferences for making personalized recommendations. However, the uncontrolled vocabulary causes a lot of problems to profile users accurately, such as ambiguity, synonyms, misspelling, low information sharing etc. To solve these problems, this paper proposes to use popular tags to represent the actual topics of tags, the content of items, and also the topic interests of users. A novel user profiling approach is proposed in this paper that first identifies popular tags, then represents users’ original tags using the popular tags, finally generates users’ topic interests based on the popular tags. A collaborative filtering based recommender system has been developed that builds the user profile using the proposed approach. The user profile generated using the proposed approach can represent user interests more accurately and the information sharing among users in the profile is also increased. Consequently the neighborhood of a user, which plays a crucial role in collaborative filtering based recommenders, can be much more accurately determined. The experimental results based on real world data obtained from Amazon.com show that the proposed approach outperforms other approaches.