860 resultados para Field-Based Method
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone condition. The objective of this work was to compare the Tropical Rapid Appraisal of Riparian Condition (TRARC) method to a satellite image based approach. TRARC was developed for rapid assessment of the environmental condition of savanna riparian zones. The comparison assessed mapping accuracy, representativeness of TRARC assessment, cost-effectiveness, and suitability for multi-temporal analysis. Two multi-spectral QuickBird images captured in 2004 and 2005 and coincident field data covering sections of the Daly River in the Northern Territory, Australia were used in this work. Both field and image data were processed to map riparian health indicators (RHIs) including percentage canopy cover, organic litter, canopy continuity, stream bank stability, and extent of tree clearing. Spectral vegetation indices, image segmentation and supervised classification were used to produce RHI maps. QuickBird image data were used to examine if the spatial distribution of TRARC transects provided a representative sample of ground based RHI measurements. Results showed that TRARC transects were required to cover at least 3% of the study area to obtain a representative sample. The mapping accuracy and costs of the image based approach were compared to those of the ground based TRARC approach. Results proved that TRARC was more cost-effective at smaller scales (1-100km), while image based assessment becomes more feasible at regional scales (100-1000km). Finally, the ability to use both the image and field based approaches for multi-temporal analysis of RHIs was assessed. Change detection analysis demonstrated that image data can provide detailed information on gradual change, while the TRARC method was only able to identify more gross scale changes. In conclusion, results from both methods were considered to complement each other if used at appropriate spatial scales.
Resumo:
The diagnosis of historic masonry walls is an intricate and complex field and has been an object of research for many years. This paper aims to propose practical methodologies for the diagnosis of historic masonry walls, specifically based on their typological characteristics. In order to develop such procedures, information relating to historic masonry typologies in Portugal, classified as rural, urban and military was gathered and techniques for the assessment of historic masonry were studied. All information was integrated to develop a pattern typology oriented methodology. Developed methodology was tested and validated in a small diagnosis campaign carried out in the Guimarães Castle. Methodology was proven to be advantageous and although the study is limited and focused on the Portuguese architectural specificities, it still holds global classifications, and therefore can be useful for any diagnosis procedure of a historic masonry wall.
Resumo:
A comprehensive field detection method is proposed that is aimed at developing advanced capability for reliable monitoring, inspection and life estimation of bridge infrastructure. The goal is to utilize Motion-Sensing Radio Transponders (RFIDS) on fully adaptive bridge monitoring to minimize the problems inherent in human inspections of bridges. We developed a novel integrated condition-based maintenance (CBM) framework integrating transformative research in RFID sensors and sensing architecture, for in-situ scour monitoring, state-of-the-art computationally efficient multiscale modeling for scour assessment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We propose a new and clinically oriented approach to perform atlas-based segmentation of brain tumor images. A mesh-free method is used to model tumor-induced soft tissue deformations in a healthy brain atlas image with subsequent registration of the modified atlas to a pathologic patient image. The atlas is seeded with a tumor position prior and tumor growth simulating the tumor mass effect is performed with the aim of improving the registration accuracy in case of patients with space-occupying lesions. We perform tests on 2D axial slices of five different patient data sets and show that the approach gives good results for the segmentation of white matter, grey matter, cerebrospinal fluid and the tumor.
Resumo:
El estudio del comportamiento de la atmósfera ha resultado de especial importancia tanto en el programa SESAR como en NextGen, en los que la gestión actual del tránsito aéreo (ATM) está experimentando una profunda transformación hacia nuevos paradigmas tanto en Europa como en los EE.UU., respectivamente, para el guiado y seguimiento de las aeronaves en la realización de rutas más eficientes y con mayor precisión. La incertidumbre es una característica fundamental de los fenómenos meteorológicos que se transfiere a la separación de las aeronaves, las trayectorias de vuelo libres de conflictos y a la planificación de vuelos. En este sentido, el viento es un factor clave en cuanto a la predicción de la futura posición de la aeronave, por lo que tener un conocimiento más profundo y preciso de campo de viento reducirá las incertidumbres del ATC. El objetivo de esta tesis es el desarrollo de una nueva técnica operativa y útil destinada a proporcionar de forma adecuada y directa el campo de viento atmosférico en tiempo real, basada en datos de a bordo de la aeronave, con el fin de mejorar la predicción de las trayectorias de las aeronaves. Para lograr este objetivo se ha realizado el siguiente trabajo. Se han descrito y analizado los diferentes sistemas de la aeronave que proporcionan las variables necesarias para obtener la velocidad del viento, así como de las capacidades que permiten la presentación de esta información para sus aplicaciones en la gestión del tráfico aéreo. Se ha explorado el uso de aeronaves como los sensores de viento en un área terminal para la estimación del viento en tiempo real con el fin de mejorar la predicción de las trayectorias de aeronaves. Se han desarrollado métodos computacionalmente eficientes para estimar las componentes horizontales de la velocidad del viento a partir de las velocidades de las aeronaves (VGS, VCAS/VTAS), la presión y datos de temperatura. Estos datos de viento se han utilizado para estimar el campo de viento en tiempo real utilizando un sistema de procesamiento de datos a través de un método de mínima varianza. Por último, se ha evaluado la exactitud de este procedimiento para que esta información sea útil para el control del tráfico aéreo. La información inicial proviene de una muestra de datos de Registradores de Datos de Vuelo (FDR) de aviones que aterrizaron en el aeropuerto Madrid-Barajas. Se dispuso de datos de ciertas aeronaves durante un periodo de más de tres meses que se emplearon para calcular el vector viento en cada punto del espacio aéreo. Se utilizó un modelo matemático basado en diferentes métodos de interpolación para obtener los vectores de viento en áreas sin datos disponibles. Se han utilizado tres escenarios concretos para validar dos métodos de interpolación: uno de dos dimensiones que trabaja con ambas componentes horizontales de forma independiente, y otro basado en el uso de una variable compleja que relaciona ambas componentes. Esos métodos se han probado en diferentes escenarios con resultados dispares. Esta metodología se ha aplicado en un prototipo de herramienta en MATLAB © para analizar automáticamente los datos de FDR y determinar el campo vectorial del viento que encuentra la aeronave al volar en el espacio aéreo en estudio. Finalmente se han obtenido las condiciones requeridas y la precisión de los resultados para este modelo. El método desarrollado podría utilizar los datos de los aviones comerciales como inputs utilizando los datos actualmente disponibles y la capacidad computacional, para proporcionárselos a los sistemas ATM donde se podría ejecutar el método propuesto. Estas velocidades del viento calculadas, o bien la velocidad respecto al suelo y la velocidad verdadera, se podrían difundir, por ejemplo, a través del sistema de direccionamiento e informe para comunicaciones de aeronaves (ACARS), mensajes de ADS-B o Modo S. Esta nueva fuente ayudaría a actualizar la información del viento suministrada en los productos aeronáuticos meteorológicos (PAM), informes meteorológicos de aeródromos (AIRMET), e información meteorológica significativa (SIGMET). ABSTRACT The study of the atmosphere behaviour is been of particular importance both in SESAR and NextGen programs, where the current air traffic management (ATM) system is undergoing a profound transformation to the new paradigms both in Europe and the USA, respectively, to guide and track aircraft more precisely on more efficient routes. Uncertainty is a fundamental characteristic of weather phenomena which is transferred to separation assurance, flight path de-confliction and flight planning applications. In this respect, the wind is a key factor regarding the prediction of the future position of the aircraft, so that having a deeper and accurate knowledge of wind field will reduce ATC uncertainties. The purpose of this thesis is to develop a new and operationally useful technique intended to provide adequate and direct real-time atmospheric winds fields based on on-board aircraft data, in order to improve aircraft trajectory prediction. In order to achieve this objective the following work has been accomplished. The different sources in the aircraft systems that provide the variables needed to derivate the wind velocity have been described and analysed, as well as the capabilities which allow presenting this information for air traffic management applications. The use of aircraft as wind sensors in a terminal area for real-time wind estimation in order to improve aircraft trajectory prediction has been explored. Computationally efficient methods have been developed to estimate horizontal wind components from aircraft velocities (VGS, VCAS/VTAS), pressure, and temperature data. These wind data were utilized to estimate a real-time wind field using a data processing approach through a minimum variance method. Finally, the accuracy of this procedure has been evaluated for this information to be useful to air traffic control. The initial information comes from a Flight Data Recorder (FDR) sample of aircraft landing in Madrid-Barajas Airport. Data available for more than three months were exploited in order to derive the wind vector field in each point of the airspace. Mathematical model based on different interpolation methods were used in order to obtain wind vectors in void areas. Three particular scenarios were employed to test two interpolation methods: a two-dimensional one that works with both horizontal components in an independent way, and also a complex variable formulation that links both components. Those methods were tested using various scenarios with dissimilar results. This methodology has been implemented in a prototype tool in MATLAB © in order to automatically analyse FDR and determine the wind vector field that aircraft encounter when flying in the studied airspace. Required conditions and accuracy of the results were derived for this model. The method developed could be fed by commercial aircraft utilizing their currently available data sources and computational capabilities, and providing them to ATM system where the proposed method could be run. Computed wind velocities, or ground and true airspeeds, would then be broadcasted, for example, via the Aircraft Communication Addressing and Reporting System (ACARS), ADS-B out messages, or Mode S. This new source would help updating the wind information furnished in meteorological aeronautical products (PAM), meteorological aerodrome reports (AIRMET), and significant meteorological information (SIGMET).
Resumo:
Semipermeable membrane devices (SPMDs) have been used as passive air samplers of semivolatile organic compounds in a range of studies. However, due to a lack of calibration data for polyaromatic hydrocarbons (PAHs), SPMD data have not been used to estimate air concentrations of target PAHs. In this study, SPMDs were deployed for 32 days at two sites in a major metropolitan area in Australia. High-volume active sampling systems (HiVol) were co-deployed at both sites. Using the HiVol air concentration data from one site, SPMD sampling rates were measured for 12 US EPA Priority Pollutant PAHs and then these values were used to determine air concentrations at the second site from SPMD concentrations. Air concentrations were also measured at the second site with co-deployed HiVols to validate the SPMD results. PAHs mostly associated with the vapour phase (Fluorene to Pyrene) dominated both the HiVol and passive air samples. Reproducibility between replicate passive samplers was satisfactory (CV < 20%) for the majority of compounds. Sampling rates ranged between 0.6 and 6.1 m(3) d(-1). SPMD-based air concentrations were calculated at the second site for each compound using these sampling rates and the differences between SPMD-derived air concentrations and those measured using a HiVol were, on average, within a factor of 1.5. The dominant processes for the uptake of PAHs by SPMDs were also assessed. Using the SPMD method described herein, estimates of particulate sorbed airborne PAHs with five rings or greater were within 1.8-fold of HiVol measured values. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any n x 1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Xanthomonas axonopodis pv. passiflorae causes bacterial spot in passion fruit. It attacks the purple and yellow passion fruit as well as the sweet passion fruit. The diversity of 87 isolates of pv. passiflorae collected from across 22 fruit orchards in Brazil was evaluated using molecular profiles and statistical procedures, including an unweighted pair-group method with arithmetical averages-based dendrogram, analysis of molecular variance (AMOVA), and an assigning test that provides information on genetic structure at the population level. Isolates from another eight pathovars were included in the molecular analyses and all were shown to have a distinct repetitive sequence-based polymerase chain reaction profile. Amplified fragment length polymorphism technique revealed considerable diversity among isolates of pv. passiflorae, and AMOVA showed that most of the variance (49.4%) was due to differences between localities. Cluster analysis revealed that most genotypic clusters were homogeneous and that variance was associated primarily with geographic origin. The disease adversely affects fruit production and may kill infected plants. A method for rapid diagnosis of the pathogen, even before the disease symptoms become evident, has value for producers. Here, a set of primers (Xapas) was designed by exploiting a single-nucleotide polymorphism between the sequences of the intergenic 16S-23S rRNA spacer region of the pathovars. Xapas was shown to effectively detect all pv. passiflorae isolates and is recommended for disease diagnosis in passion fruit orchards.
Resumo:
Aim: Unless specifically treated (glucocorticoids in low doses), Familial Hyperaldosteronism Type I(FH-I) may result in early death from stroke. We report the successful application of a rapid, polymerase chain reaction (PCR)-based method of detecting the 'hybrid' 11 beta-hydroxylase (11 beta-OHase)/aldosterone synthase (AS) gene as a screening test for FH-I. Methods: 'Long-PCR' was used to amplify, concurrently, a 4 kb fragment of AS gene (both primers AS-specific) and a 4 kb fragment of the hybrid gene (5' primer 11 beta-OHase-specific, 3'primer AS-specific) from DNA extracted from blood either collected locally or transported from elsewhere. Sample collection and transport were straightforward. This 4 kb fragment contains all the currently recognised hybrid gene 'crossover' points. Results: Within a single family, long-PCR identified all 21 individuals known to have FH-I. Hypertension was corrected in all 11 treated with glucocorticoids. Nine with normal blood pressure are being closely followed for development of hypertension. Long-PCR cord blood analysis excluded FH-I in three neonates born to affected individuals. Long-PCR newly identified two other affected families: (1) a female (60 years) with a personal and family history of stroke and her normotensive daughter (40 years), and (2) a female (51 years) previously treated for primary aldosteronism with amiloride, her two hypertensive sons (14 and 16 years) and her hypertensive mother (78 years). No false negative or false positive results have yet been encountered. At least seven other centres have successfully performed this test. Conclusion: Long-PCR is a reliable method of screening individuals of all ages for FH-I.
Resumo:
Nutrients were added to 12 microatolls in One Tree Island lagoon every low tide for 13 mo to an initial concentration of 10 mu M (ammonium, N) and 2 mu M (phosphate, P). These concentrations remained above background for 2 to 3 h after addition. The addition of ammonium (N and NI-P but not P alone) significantly increased P, (gross photosynthesis) P,, (net photosynthesis) and R (respiration) per unit wet-tissue weight and cc (photosynthetic efficiency) in Tridacna maxima after 3 mo nutrient enrichment. These responses to small and transient changes in ammonium concentrations suggest that symbiotic clams are not nutrient-replete, and that even subtle changes in nutrients can have a measurable effect on photosynthesis. The same clams did not show significant differences in photosynthetic parameters 6 mo after the beginning of nutrient enrichment, suggesting that their previous responses had either been seasonal or that symbiotic clams such as T. maxima are able to adjust their photophysiology following external changes in nutrient concentrations.
Resumo:
In this paper, we propose a method based on association rule-mining to enhance the diagnosis of medical images (mammograms). It combines low-level features automatically extracted from images and high-level knowledge from specialists to search for patterns. Our method analyzes medical images and automatically generates suggestions of diagnoses employing mining of association rules. The suggestions of diagnosis are used to accelerate the image analysis performed by specialists as well as to provide them an alternative to work on. The proposed method uses two new algorithms, PreSAGe and HiCARe. The PreSAGe algorithm combines, in a single step, feature selection and discretization, and reduces the mining complexity. Experiments performed on PreSAGe show that this algorithm is highly suitable to perform feature selection and discretization in medical images. HiCARe is a new associative classifier. The HiCARe algorithm has an important property that makes it unique: it assigns multiple keywords per image to suggest a diagnosis with high values of accuracy. Our method was applied to real datasets, and the results show high sensitivity (up to 95%) and accuracy (up to 92%), allowing us to claim that the use of association rules is a powerful means to assist in the diagnosing task.
Resumo:
A new wavelet-based method for solving population balance equations with simultaneous nucleation, growth and agglomeration is proposed, which uses wavelets to express the functions. The technique is very general, powerful and overcomes the crucial problems of numerical diffusion and stability that often characterize previous techniques in this area. It is also applicable to an arbitrary grid to control resolution and computational efficiency. The proposed technique has been tested for pure agglomeration, simultaneous nucleation and growth, and simultaneous growth and agglomeration. In all cases, the predicted and analytical particle size distributions are in excellent agreement. The presence of moving sharp fronts can be addressed without the prior investigation of the characteristics of the processes. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
We describe the progress towards developing a patient rated toxicity index that meets all of the patient-important attributes defined by the OMERACT Drug Safety Working Party, These attributes are frequency, severity. importance to patient, importance to the clinician, impact on economics, impact on activities, and integration of adverse effects with benefits. The Stanford Toxicity Index (STI) has been revised to collect all attributes with the exception of impact on activities. However, since the STI is a part of the Health Assessment Questionnaire (HAQ). impact on activities is collected by the HAQ. In particular, a new question asks patients to rate overall satisfaction, taking into consideration both benefits and adverse effects. The nest step in the development of this tool is to ensure that the STI meets the OMERACT filter of truth, discrimination, and feasibility. Although truth and feasibility have been confirmed by comparisons within the ARAMIS database, discrimination needs to be assessed in clinical trials.
Resumo:
Reporter genes are routinely used in every laboratory for molecular and cellular biology for studying heterologous gene expression and general cellular biological mechanisms, such as transfection processes. Although well characterized and broadly implemented, reporter genes present serious limitations, either by involving time-consuming procedures or by presenting possible side effects on the expression of the heterologous gene or even in the general cellular metabolism. Fourier transform mid-infrared (FT-MIR) spectroscopy was evaluated to simultaneously analyze in a rapid (minutes) and high-throughput mode (using 96-wells microplates), the transfection efficiency, and the effect of the transfection process on the host cell biochemical composition and metabolism. Semi-adherent HEK and adherent AGS cell lines, transfected with the plasmid pVAX-GFP using Lipofectamine, were used as model systems. Good partial least squares (PLS) models were built to estimate the transfection efficiency, either considering each cell line independently (R 2 ≥ 0.92; RMSECV ≤ 2 %) or simultaneously considering both cell lines (R 2 = 0.90; RMSECV = 2 %). Additionally, the effect of the transfection process on the HEK cell biochemical and metabolic features could be evaluated directly from the FT-IR spectra. Due to the high sensitivity of the technique, it was also possible to discriminate the effect of the transfection process from the transfection reagent on KEK cells, e.g., by the analysis of spectral biomarkers and biochemical and metabolic features. The present results are far beyond what any reporter gene assay or other specific probe can offer for these purposes.