964 resultados para Field of dunes Pirangi-Potengi
Resumo:
The city of Natal-RN is constructed on dune areas with wavy relives softly waved and green areas that help to keep a pleasant climate, amongst these is distinguished field Pirangi-Potengi the dune with the areas of San Vale and Lagoinha. These environments are being substituted gradual for property and other workmanships of engineering on behalf of the urban expansion. This study the elaboration of a geoambiental mapping of Field had as objective generality Pirangi-Potengi the Dune with emphasis the San Vale and Lagoinha in Natal-RN. The done mapping had as objective specific to elaborate a vegetation map, a map of registers in cadastre of ambient problems to dunes, a map of flooding susceptibility, a map of vulnerability to the underground water contamination and a map of use and occupation of the ground. Of the carried through analysis, the area in study reveals sufficiently degraded, remaining only few green areas and dunares, as well as, the vulnerable presence of areas of vulnerability in floods and areas the contamination of the water-bearing one. The gotten results allow to affirm that this type of mapping, is of great importance for analysis and evaluation of the environment of the city
Resumo:
Oxide dispersion strengthened reduced-activation ferritic-martensitic steels are promising candidates for applications in future fusion power plants. Samples of a reduced activation ferritic-martensitic 9 wt.%Cr-oxide dispersion strengthened Eurofer steel were cold rolled to 80% reduction in thickness and annealed in vacuum for 1 h from 200 to 1350 degrees C to evaluate its thermal stability. Vickers microhardness testing and electron backscatter diffraction (EBSD) were used to characterize the microstructure. The microstructural changes were also followed by magnetic measurements, in particular the corresponding variation of the coercive field (H(c)), as a function of the annealing treatment. Results show that magnetic measurements were sensitive to detect the changes, in particular the martensitic transformation, in samples annealed above 850 degrees C (austenitic regime). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 mu m). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B(50) and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Our AUTC Biotechnology study (Phases 1 and 2) identified a range of areas that could benefit from a common approach by universities nationally. A national network of biotechnology educators needs to be solidified through more regular communication, biennial meetings, and development of methods for sharing effective teaching practices and industry placement strategies, for example. Our aims in this proposed study are to: a. Revisit the state of undergraduate biotechnology degree programs nationally to determine their rate of change in content, growth or shrinkage in student numbers (as the biotech industry has had its ups and downs in recent years), and sustainability within their institutions in light of career movements of key personnel, tightening budgets, and governmental funding priorities. b. Explore the feasibility of a range of initiatives to benefit university biotechnology education to determine factors such as how practical each one is, how much buy-in could be gained from potentially participating universities and industry counterparts, and how sustainable such efforts are. One of many such initiatives arising in our AUTC Biotech study was a national register of industry placements for final-year students. c. During scoping and feasibility study, to involve our colleagues who are teaching in biotechnology – and contributing disciplines. Their involvement is meant to yield not only meaningful insight into how to strengthen biotechnology teaching and learning but also to generate ‘buy-in’ on any initiatives that result from this effort.
Resumo:
We study the spectral and noise properties of the fluorescence field emitted from a two-level atom driven by a beam of squeezed light. For a weak driving field we derive simple analytical formulae for the fluorescence and quadrature-noise spectra which are valid for an arbitrary bandwidth of the squeezed field. We analyse the spectra in the regime where the squeezing bandwidth is smaller or comparable to the atomic linewidth, the area where non-Markovian effects are important. We emphasize that there is a noticable difference between the fluorescence spectra for the thermal and squeezed field excitations. In both cases the spectrum can be narrower than any bandwidth involved in the process. However, as we point out for the squeezed driving field the linewidth narrowing, being much larger than in the thermal-field case, can be attributed to the squeezing of the fluctuations in the driving held. We also calculate the quadrature-noise spectrum of the emitted fluorescence, and find that for a detuned squeezed field the fluorescence spectrum does not reveal the quadrature-noise spectrum. In contrast to the fluorescence spectrum having two peaks, the quadrature-noise spectrum exhibits three peaks. We explain this difference as arising from the competiting three-photon scattering processes. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
This is the first paper in a study on the influence of the environment on the crack tip strain field for AISI 4340. A stressing stage for the environmental scanning electron microscope (ESEM) was constructed which was capable of applying loads up to 60 kN to fracture-mechanics samples. The measurement of the crack tip strain field required preparation (by electron lithography or chemical etching) of a system of reference points spaced at similar to 5 mu m intervals on the sample surface, loading the sample inside an electron microscope, image processing procedures to measure the displacement at each reference point and calculation of the strain field. Two algorithms to calculate strain were evaluated. Possible sources of errors were calculation errors due to the algorithm, errors inherent in the image processing procedure and errors due to the limited precision of the displacement measurements. Estimation of the contribution of each source of error was performed. The technique allows measurement of the crack tip strain field over an area of 50 x 40 mu m with a strain precision better than +/- 0.02 at distances larger than 5 mu m from the crack tip. (C) 1999 Kluwer Academic Publishers.
Resumo:
Crack tip strain maps have been measured for AISI 4340 high strength steel. No significant creep was observed. The measured values of CTOD were greater than expected from the HRR model. Crack tip branching was observed in every experiment. The direction of crack branching was in the same direction as a major ridge'' of epsilon(yy) strain, which in turn was in the same direction as predicted by the HRR model. Furthermore, the measured magnitudes of the epsilon(y)y strain in this same direction were in general greater than the values predicted by the HRR model. This indicates more plasticity in the crack tip region than expected from the HRR model. This greater plasticity could be related to the larger than expected CTOD values. The following discrepancies between the measured strain fields for AISI 4340 and the HRR predictions are noteworthy: (1) The crack branching. (2) Values of CTOD significantly higher than predicted by HRR. (3) The major ridge'' of epsilon(yy) strain an angle of about 60 degrees with the direction of overall propagation of the fatigue precrack, in which the measured magnitudes of the epsilon(yy) strain were greater than the values predicted by the HRR model. (4) Asymmetric shape of the plastic zone as measured by the epsilon(yy) strain. (5) Values of shear strain gamma(xy) significantly higher than predicted by the HRR model. (C) 1999 Kluwer Academic Publishers.
Resumo:
This paper studied the influence of hydrogen and water vapour environments on the plastic behaviour in the vicinity of the crack tip for AISI 4340. Hydrogen and water vapour (at a pressure of 15 Torr) significantly increased the crack tip opening displacement. The crack tip strain distribution in 15 Torr hydrogen was significantly different to that measured in vacuum. In the presence of sufficient hydrogen, the plastic zone was larger, was elongated in the direction of crack propagation and moreover there was significant creep. These observations support the hydrogen enhanced localised plasticity model for hydrogen embrittlement in this steel. The strain distribution in the presence of water vapour also suggests that SCC in AISI 4340 occurs via the hydrogen enhanced localised plasticity mechanism. (C) 1999 Kluwer Academic Publishers.
Resumo:
We report detailed measurements of the interlayer magnetoresistance of the layered organic superconductor kappa-(BEDT-TTF)(2)Cu(SCN)(2) for temperatures down to 0.5 K and fields up to 30 T. The upper critical field is determined from the resistive transition for a wide range of temperatures and field directions. For magnetic fields parallel to the layers, the upper critical field increases approximately linearly with decreasing temperature. The upper critical field at low temperatures is compared to the Pauli paramagnetic limit, at which singlet superconductivity should be destroyed by the Zeeman splitting of the electron spins. The measured value is comparable to a value for the paramagnetic limit calculated from thermodynamic quantities but exceeds the limit calculated from BCS theory. The angular dependence of the upper critical field shows a cusplike feature for fields close to the layers, consistent with decoupled layers.
Resumo:
This study reports on the development and characterization of bovine serum albumin (BSA) nanospheres containing Silicon(IV) phthalocyanine (NzPc) and/or maghemite nanoparticles (MNP), the latter introduced via ionic magnetic fluid (MF). The nanosized BSA-loaded samples were designed for synergic application while combining Photodynamic Therapy and Hyperthermia. Incorporation of MNP in the albumin-based template, allowing full control of the magnetic content, was accomplished by adding a highly-stable ionic magnetic fluid sample to the albumin suspension, following heat denaturing. The material`s evaluation was performed using Zeta potential measurements and scanning electron microscopy. The samples were characterized by steady-state techniques and time-resolved fluorescence. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic drug delivery system.
Disengaging leadership: Educational administration and management as a field of scientific knowledge
Resumo:
In recent years qualitative research methods have been adopted within in the field of music education and have received widespread acceptance. However, the theoretical framework provided by ethnomethodology (Garfinkel, 1974, in R. Turner, Ethnomethodology , Penguin, Middlesex, UK) and the tools of conversational analysis (Sacks, 1992, Lectures on Conversation , edited by Gail Jefferson, Blackwell, Oxford, UK) have, to this point, been overlooked by researchers in the field of music education. In this paper I argue that the application of ethnomethodological and conversation analytical approaches in the field of research in music education can provide fresh insights into the work of music teachers and how this work is accomplished in institutional settings. Here I demonstrate how a conversation analytical perspective drawing on an ethnomethodological framework might be used to investigate transcripts of audio-recorded interview talk. This type of analysis can illuminate aspects of members' roles in relation to, and perceptions about music education in school settings that might be overlooked in other types of analysis. A conversation analytical approach to the examination of talk-in-interaction explicates in fine-grained detail how members orient to matters at hand in the context of research settings, as well as revealing features of the cultural world of music teaching. Further application of the approach to research problems in other school settings, I argue, will inform the field of music education in ways yet to be realised.
Resumo:
Measurements of mean and fluctuating velocity and temperature and their self- and cross-products to the third-order are presented for a heated axisymmetric air jet. Froude numbers in the range of 3500 13,190, Reynolds numbers in the range of 3470-8500 and non-dimensional streamwise distances. X*, from 0.27 to 1.98 are covered by the data. It was found that turbulence intensity decreases for the heated jet in the region between the inertia dominated and the buoyancy dominated regions which is contrary to findings with helium jets mixing with ambient air to produce density fluctuations. The effects of heating on the turbulent kinetic energy budget and the temperature variance budget show small differences for the inertia dominated region and the intermediate region which help to explain the transition process to the far field plume region. Constants are evaluated for the isotropic eddy diffusivity and generalised gradient hypothesis models as well as the scalar variance model. No significant effect of heating on the dissipation time-scale ratio was found. A novel wire array with an inclined cold wire was used. Measurements obtained with this probe are found to lead to asymmetries in some of the higher-order products. Further investigation suggested that the asymmetries are attributable to an as yet unreported interference effect produced by the leading prong of the inclined temperature wire, The effect may also have implications for inclined velocity wires which contain a temperature component when used in heated flows. (C) 2002 Elsevier Science Inc. All rights reserved.