964 resultados para Field gel-electrophoresis
Resumo:
We studied the pattern of BCR involvement in 52 patients with chronic myeloid leukemia by Southern blotting. Of 33 Philadelphia (Ph)-positive patients, 30 had evidence of M-BCR rearrangement, two cases were difficult to interpret, and one clearly lacked evidence of M-BCR rearrangement. Of 19 Ph-negative patients, nine showed M-BCR rearrangement, nine showed no rearrangement, and one result was uncertain. We selected for more detailed study eight patients (three Ph-positive and five Ph-negative). Two of the Ph-positive patients, whose Southern blots were difficult to interpret, had rearranged bands when the BCR gene was studied by pulsed field gel electrophoresis (PFGE). Results of PFGE studies and in situ hybridization to metaphase chromosomes in the third Ph-positive patient, whose DNA clearly lacked M-BCR rearrangement on Southern analysis, were consistent with a breakpoint on chromosome 22 located 3' of all known exons of the BCR gene. However, mRNA studied with the polymerase chain reaction showed evidence of a classical b2-a2 linkage. The findings in this patient may be explained by an unusual genomic breakpoint downstream of the BCR gene associated with long range splicing that excluded all of the 3' BCR exons. Of the five patients with Ph-negative M-BCR non-rearranged CML studied by PFGE for BCR gene rearrangement, none had evidence of rearranged bands. We conclude that PFGE is a valuable adjunct to standard molecular techniques for the study of atypical cases of CML. Occasional patients with Ph-positive CML have breakpoints outside M-BCR. The BCR gene is probably not involved in patients with Ph-negative, M-BCR non-rearranged CML.
Resumo:
In studies of radiation-induced DNA fragmentation and repair, analytical models may provide rapid and easy-to-use methods to test simple hypotheses regarding the breakage and rejoining mechanisms involved. The random breakage model, according to which lesions are distributed uniformly and independently of each other along the DNA, has been the model most used to describe spatial distribution of radiation-induced DNA damage. Recently several mechanistic approaches have been proposed that model clustered damage to DNA. In general, such approaches focus on the study of initial radiation-induced DNA damage and repair, without considering the effects of additional (unwanted and unavoidable) fragmentation that may take place during the experimental procedures. While most approaches, including measurement of total DNA mass below a specified value, allow for the occurrence of background experimental damage by means of simple subtractive procedures, a more detailed analysis of DNA fragmentation necessitates a more accurate treatment. We have developed a new, relatively simple model of DNA breakage and the resulting rejoining kinetics of broken fragments. Initial radiation-induced DNA damage is simulated using a clustered breakage approach, with three free parameters: the number of independently located clusters, each containing several DNA double-strand breaks (DSBs), the average number of DSBs within a cluster (multiplicity of the cluster), and the maximum allowed radius within which DSBs belonging to the same cluster are distributed. Random breakage is simulated as a special case of the DSB clustering procedure. When the model is applied to the analysis of DNA fragmentation as measured with pulsed-field gel electrophoresis (PFGE), the hypothesis that DSBs in proximity rejoin at a different rate from that of sparse isolated breaks can be tested, since the kinetics of rejoining of fragments of varying size may be followed by means of computer simulations. The problem of how to account for background damage from experimental handling is also carefully considered. We have shown that the conventional procedure of subtracting the background damage from the experimental data may lead to erroneous conclusions during the analysis of both initial fragmentation and DSB rejoining. Despite its relative simplicity, the method presented allows both the quantitative and qualitative description of radiation-induced DNA fragmentation and subsequent rejoining of double-stranded DNA fragments. (C) 2004 by Radiation Research Society.
Resumo:
Two genetic fingerprinting techniques, pulsed-field gel electrophoresis (PFGE) and ribotyping, were used to characterize 207 Escherichia coli O157 isolates from food animals, foods of animal origin, and cases of human disease (206 of the isolates were from the United Kingdom). In addition, 164 of these isolates were also phage typed. The isolates were divided into two general groups: (i) unrelated isolates not known to be epidemiologically linked (n = 154) and originating from food animals, foods and the environment, or humans and (ii) epidemiologically related isolates (n = 53) comprised of four related groups (RGs) originating either from one farm plus the abattoir where cattle from that farm were slaughtered or from one of three different English abattoirs. PFGE was conducted with the restriction endonuclease XbaI. while for ribotyping, two restriction endonucleases (PstI and SphI) were combined to digest genomic DNAs simultaneously. The 207 E. coli O157 isolates produced 97 PFGE profiles and 51 ribotypes. The two genetic fingerprinting methods had similar powers to discriminate the 154 epidemiologically unrelated E. coli O157 isolates in the study (Simpson's index of diversity [D] = 0.98 and 0.94 for PFGE typing and ribotyping, respectively). There was no correlation between the source of an isolate (healthy meat or milk animals, retail meats, or cases of human infection) and either particular PFGE or ribotype profiles or clusters. Combination of the results of both genetic fingerprinting methods produced 146 types, significantly more than when either of the two methods was used individually. Consequently, the superior discriminatory performance of the PFGE-ribotyping combination was proven in two ways: (i) by demonstrating that the majority of the E. coli O157 isolates with unrelated histories were indeed distinguishable types and (ii) by identifying some clonal groups among two of the four RGs of E. coli O157 isolates (comprising PFGE types different by just one or two bands), the relatedness of which would have remained unconfirmed otherwise.
Resumo:
Various molecular systems are available for epidemiological, genetic, evolutionary, taxonomic and systematic studies of innumerable fungal infections, especially those caused by the opportunistic pathogen C. albicans. A total of 75 independent oral isolates were selected in order to compare Multilocus Enzyme Electrophoresis (MLEE), Electrophoretic Karyotyping (EK) and Microsatellite Markers (Simple Sequence Repeats - SSRs), in their abilities to differentiate and group C. albicans isolates (discriminatory power), and also, to evaluate the concordance and similarity of the groups of strains determined by cluster analysis for each fingerprinting method. Isoenzyme typing was performed using eleven enzyme systems: Adh, Sdh, M1p, Mdh, Idh, Gdh, G6pdh, Asd, Cat, Po, and Lap (data previously published). The EK method consisted of chromosomal DNA separation by pulsed-field gel electrophoresis using a CHEF system. The microsatellite markers were investigated by PCR using three polymorphic loci: EF3, CDC3, and HIS3. Dendrograms were generated by the SAHN method and UPGMA algorithm based on similarity matrices (S(SM)). The discriminatory power of the three methods was over 95%, however a paired analysis among them showed a parity of 19.7-22.4% in the identification of strains. Weak correlation was also observed among the genetic similarity matrices (S(SM)(MLEE) x S(SM)(EK) x S(SM)(SSRs)). Clustering analyses showed a mean of 9 +/- 12.4 isolates per cluster (3.8 +/- 8 isolates/taxon) for MLEE, 6.2 +/- 4.9 isolates per cluster (4 +/- 4.5 isolates/taxon) for SSRs, and 4.1 +/- 2.3 isolates per cluster (2.6 +/- 2.3 isolates/taxon) for EK. A total of 45 (13%), 39(11.2%), 5 (1.4%) and 3 (0.9%) clusters pairs from 347 showed similarity (Si) of 0.1-10%, 10.1-20%, 20.1-30% and 30.1-40%, respectively. Clinical and molecular epidemiological correlation involving the opportunistic pathogen C. albicans may be attributed dependently of each method of genotyping (i.e., MLEE, EK, and SSRs) supplemented with similarity and grouping analysis. Therefore, the use of genotyping systems that give results which offer minimum disparity, or the combination of the results of these systems, can provide greater security and consistency in the determination of strains and their genetic relationships. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This research aimed to evaluate the occurrence of Staphylococcus aureus isolates in milk and in the milking environment of 10 small-scale farms (<400 L/d) located in the regions of Franca and Ribeirao Preto, state of Sao Paulo, Brazil. Two-hundred twenty samples of milk were collected from individual cows, along with 120 samples from bulk tank milk, 389 samples from milking equipment and utensils (teat cups, buckets, and sieves), and 120 samples from milkers' hands. Fifty-six Staph. aureus strains were isolated from 849 analyzed samples (6.6%): 12 (5.5%) from milk samples of individual cows, 26 (21.7%) from samples of bulk tank milk, 14 (3.6%) from samples collected from equipment and utensils, and 4 (3.3%) from samples from milkers' hands. Pulsed-field gel electrophoresis typing of the 56 Staph. aureus isolates by SmaI restriction enzyme resulted in 31 profiles (pulsotypes) arranged in 12 major clusters. Results of this study indicate a low incidence, but wide distribution of Staph. aureus strains isolated from raw milk collected from individual cows and surfaces of milkers' hands and milking equipment in the small-scale dairy farms evaluated. However, the high percentage of bulk milk samples found with Staph. aureus is of public health concern because raw, unprocessed milk is regularly consumed by the Brazilian population.
Resumo:
We evaluated three molecular methods for identification of Francisella strains: pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP) analysis, and 16S rRNA gene sequencing. The analysis was performed with 54 Francisella tularensis subsp. holarctica, 5 F. tularensis subsp. tularensis, 2 F. tularensis subsp. novicida, and 1 F. philomiragia strains. On the basis of the combination of results obtained by PFGE with the restriction enzymes XhoI and BamHI, PFGE revealed seven pulsotypes, which allowed us to discriminate the strains to the subspecies level and which even allowed us to discriminate among some isolates of F. tularensis subsp. holarctica. The AFLP analysis technique produced some degree of discrimination among F. tularensis subsp. holarctica strains (one primary cluster with three major subclusters and minor variations within subclusters) when EcoRI-C and MseI-A, EcoRI-T and MseI-T, EcoRI-A and MseI-C, and EcoRI-0 and MseI-CA were used as primers. The degree of similarity among the strains was about 94%. The percent similarities of the AFLP profiles of this subspecies compared to those of F. tularensis subsp. tularensis, F. tularensis subsp. novicida, and F. philomiragia were less than 90%, about 72%, and less than 24%, respectively, thus permitting easy differentiation of this subspecies. 16S rRNA gene sequencing revealed 100% similarity for all F. tularensis subsp. holarctica isolates compared in this study. These results suggest that although limited genetic heterogeneity among F. tularensis subsp. holarctica isolates was observed, PFGE and AFLP analysis appear to be promising tools for the diagnosis of infections caused by different subspecies of F. tularensis and suitable techniques for the differentiation of individual strains.
Resumo:
Background. Pulsed-field gel electrophoresis (PFGE) is a laboratory technique in which Salmonella DNA banding patterns are used as molecular fingerprints for epidemiologic study for "PFGE clusters". State and national health departments (CDC) use PFGE to detect clusters of related cases and to discover common sources of bacteria in outbreaks. ^ Objectives. Using Houston Department of Health and Human Services (HDHHS) data, the study sought: (1) to describe the epidemiology of Salmonella in Houston, with PFGE subtype as a variable; and (2) to determine whether PFGE patterns and clusters detected in Houston were local appearances of PFGE patterns or clusters that occurred statewide. ^ Methods. During the years 2002 to 2005, the HDHHS collected and analyzed data from routine surveillance of Salmonella. We implemented a protocol, between May 1, 2007 and December 31, 2007, in which PFGE patterns from local cases were sent via e-mail to the Texas Department of State Health Services, to verify whether the local PFGE patterns were also part of statewide clusters. PFGE was performed from 106 patients providing a sample from which Salmonella was isolated in that time period. Local PFGE clusters were investigated, with the enhanced picture obtained by linking local PFGE patterns to PFGE patterns at the state and national level. ^ Results. We found that, during the years 2002 to 2005, there were 66 PFGE clusters, ranging in size from 2 to 22 patients within each cluster. Between different serotypes, there were marked differences in the sizes of PFGE clusters. A common source or risk factor was found in fewer than 5 of the 66 PFGE clusters. With the revised protocol, we found that 19 of 66 local PFGE patterns were indistinguishable from PFGE patterns at Texas DSHS. During the eight months, we identified ten local PFGE clusters with a total of 42 patients. The PFGE pattern for eight of the ten clusters matched the PFGE patterns for cases reported to Texas DSHS from other geographic areas. Five of the ten PFGE patterns matched PFGE patterns for clusters under investigation at PulseNet at the national level. HDHHS epidemiologists identified a mode of transmission in two of the ten local clusters and a common risk factor in a third local cluster. ^ Conclusion. In the extended-study protocol, Houston PFGE patterns were linked to patterns seen at the state and national level. The investigation of PFGE clusters was more efficacious in detecting a common transmission when local data were linked to state and national data. ^