27 resultados para Fibrobacter-succinogenes S85
Resumo:
It is widely accepted that cellulose is the rate-limiting substrate in the anaerobic digestion of organic solid wastes and that cellulose solubilisation is largely mediated by surface attached bacteria. However, little is known about the identity or the ecophysiology of cellulolytic microorganisms from landfills and anaerobic digesters. The aim of this study was to investigate an enriched cellulolytic microbial community from an anaerobic batch reactor. Chemical oxygen demand balancing was used to calculate the cellulose solubilisation rate and the degree of cellulose solubilisation. Fluorescence in situ hybridisation (FISH) was used to assess the relative abundance and physical location of three groups of bacteria belonging to the Clostridium lineage of the Firmicutes that have been implicated as the dominant cellulose degraders in this system. Quantitation of the relative abundance using FISH showed that there were changes in the microbial community structure throughout the digestion. However, comparison of these results to the process data reveals that these changes had no impact on the cellulose solubilisation in the reactor. The rate of cellulose solubilisation was approximately stable for much of the digestion despite changes in the cellulolytic population. The solubilisation rate appears to be most strongly affected by the rate of surface area colonisation and the biofilm architecture with the accepted model of first order kinetics due to surface area limitation applying only when the cellulose particles are fully covered with a thin layer of cells. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two in vitro experiments were conducted to analyse the effects of replacing dietary barley grain with wastes of tomato and cucumber fruits and a 1 : 1 tomato : cucumber mixture on rumen fermentation characteristics and microbial abundance. The control (CON) substrate contained 250 g/kg of barley grain on a dry matter (DM) basis, and another 15 substrates were formulated by replacing 50, 100, 150, 200 or 250 g of barley grain/kg with the same amount (DM basis) of tomato or cucumber fruits or 1 : 1 tomato : cucumber mixture. In Expt 1, all substrates were incubated in batch cultures with rumen micro-organisms from goats for 24 h. Increasing amounts of tomato, cucumber and the mixture of both fruits in the substrate increased final pH and gas production, without changes in final ammonia-nitrogen (NH3-N) concentrations, substrate degradability and total volatile fatty acid (VFA) production, indicating that there were no detrimental effects of any waste fruits on rumen fermentation. Therefore, in Expt 2 the substrates including 250 g of waste fruits (T250, C250 and M250 for tomato, cucumber and the mixture of both fruits, respectively) and the CON substrate were incubated in single-flow continuous-culture fermenters for 8 days. Total VFA production did not differ among substrates, but there were differences in VFA profile. Molar proportions of propionate, isobutyrate and isovalerate were lower and acetate : propionate ratio was greater for T250 compared with CON substrate. Fermentation of substrates containing cucumber (C250 and M250) resulted in lower proportions of acetate, isobutyrate and isovalerate and acetate : propionate ratio, but greater butyrate proportions than the CON substrate. Carbohydrate degradability and microbial N synthesis tended to be lower for substrates containing cucumber than for the CON substrate, but there were no differences between CON and T250 substrates. Abundance of total bacteria, Fibrobacter succinogenes and Ruminococcus flavefaciens, fungi, methanogenic archaea and protozoa were similar in fermenters fed T250 and CON substrates, but fermenters fed C250 and M250 substrates had lower abundances of R. flavefaciens, fungi and protozoa than those fed the CON substrate. Results indicated that tomato fruits could replace dietary barley grain up to 250 g/kg of substrate DM without noticeable effects on rumen fermentation and microbial populations, but the inclusion of cucumber fruits at 250 g/kg of substrate DM negatively affected some microbial populations as it tended to reduce microbial N synthesis and changed the VFA profile. More studies are needed to identify the dietary inclusion level of cucumber which produces no detrimental effects on rumen fermentation and microbial growth.
Resumo:
Four rumen-fistulated sheep fed a 66:34 alfalfa hay:concentrate diet were used as donors to investigate the effect of rumen contents’ treatment on microbial populations in the resulting fluid. Rumen contents were sampled from each individual sheep and subjected to the following treatments: SQ: squeezed through 4 layers of cheesecloth; FIL: SQ treatment and further filtration through a 100-μm nylon cloth; STO: reated with a Stomacher® for 3 min at 230 rev min-1 and followed by SQ. Microbial populations in the fluid were analysed by real-time PCR and bacterial diversity was assessed by the automated ribosomal intergenic spacer analysis (ARISA) of the 16S ribosomal DNA. Bacterial DNA concentrations and relative abundance of Ruminococcus flavefaciens, arqueal and fungal DNA did not differ (P>0.05) between treatments. In contrast, STO treatment decreased (P<0.05) protozoal DNA concentrations and increased (P<0.05) the relative abundance of Fibrobacter succinogenes compared with SQ method. There were no differences (P>0.05) between treatments either in the Shannon index or in the number of peaks in the ARISA electropherograms, indicating no effect on bacterial diversity. Studies analyzing the influence on the tested methods on fermentation characteristics of different substrates when the fluid is used as inoculum is required.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Succinic acid (SA) is a highly versatile building block that is used in a wide range of industrial applications. The biological production of succinic acid has emerged in the last years as an efficient alternative to the chemical production based on fossil fuels. However, in order to fully replace the competing petro-based chemical process from which it has been produced so far, some challenges remain to be surpassed. In particular, one main obstacle would be to reduce its production costs, mostly associated to the use of refined sugars. The present work is focused on the development of a sustainable and cost-e↵ective microbial production process based on cheap and renewable resources, such as agroindustrial wastes. Hence, glycerol and carob pods were identified as promising feedstocks and used as inexpensive carbon sources for the bioproduction of succinic acid by Actinobacillus succinogenes 130Z, one of the best naturally producing strains. Even though glycerol is a highly available carbon source, as by-product of biodiesel production, its consumption by A. succinogenes is impaired due to a redox imbalance during cell growth. However, the use of an external electron acceptor such as dimethylsulfoxide (DMSO) may improve glycerol metabolism and succinic acid production by this strain. As such, DMSO was tested as a co-substrate for glycerol consumption and concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by this biocatalyst. Aiming at obtaining higher succinic acid yield and production rate, batch and fed-batch experiments were performed under controlled cultivation conditions. Batch experiments resulted in a succinic acid yield on glycerol of 0.95 g SA/g GLY and a production rate of 2.13 g/L.h, with residual production of acetic and formic acids. In fed-batch experiment, the SA production rate reached 2.31 g/L.h, the highest value reported in the literature for A. succinogenes using glycerol as carbon source. DMSO dramatically improved the conversion of glycerol by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Carob pods, highly available in Portugal as a residue from the locust bean gum industry, contain a significant amount of fermentable sugars such as sucrose, glucose and fructose and were also used as substrate for succinic acid production. Sugar extraction from raw and roasted carobs was optimized varying solid/water ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Kinetic studies of glucose, fructose and sucrose consumption by A. succinogenes as individual carbon sources till 30 g/L were first determined to assess possible metabolic diferences. Results showed no significant diferences related to sugar consumption and SA production between the diferent sugars. Carob pods water extracts were then used as carbon source during controlled batch cultivations. (...)
Resumo:
Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalyzed by the related enzyme succinate:quinone reductase (succinate dehydrogenase). In the previously determined structure of QFR from Wolinella succinogenes, the site of fumarate reduction in the flavoprotein subunit A of the enzyme was identified, but the site of menaquinol oxidation was not. In the crystal structure, the acidic residue Glu-66 of the membrane spanning, diheme-containing subunit C lines a cavity that could be occupied by the substrate menaquinol. Here we describe that, after replacement of Glu-C66 with Gln by site-directed mutagenesis, the resulting mutant is unable to grow on fumarate and the purified enzyme lacks quinol oxidation activity. X-ray crystal structure analysis of the Glu-C66 → Gln variant enzyme at 3.1-Å resolution rules out any major structural changes compared with the wild-type enzyme. The oxidation-reduction potentials of the heme groups are not significantly affected. We conclude that Glu-C66 is an essential constituent of the menaquinol oxidation site. Because Glu-C66 is oriented toward a cavity leading to the periplasm, the release of two protons on menaquinol oxidation is expected to occur to the periplasm, whereas the uptake of two protons on fumarate reduction occurs from the cytoplasm. Thus our results indicate that the reaction catalyzed by W. succinogenes QFR generates a transmembrane electrochemical potential.
Resumo:
The 4th World Symposium on Pulmonary Hypertension was the first international meeting to focus not only on pulmonary arterial hypertension (PAH) but also on the so-called non-PAH forms of pulmonary hypertension (PH). The term ""non-PAH PH"" summarizes those forms of PH that are found in groups 2 to 5 of the current classification of PH, that is, those forms associated with left heart disease, chronic lung disease, recurrent venous thromboembolism, and other diseases. Many of these forms of PH are much more common than PAH, but all of them have been less well studied, especially in terms of medical therapy. The working group on non-PAH PH focused mainly on 4 conditions: chronic obstructive lung disease, interstitial lung disease, chronic thromboembolic PH, and left heart disease. The medical literature regarding the role of PH in these diseases was reviewed, and recommendations regarding diagnosis and treatment of PH in these conditions are provided. Given the lack of robust clinical trials addressing PH in any of these conditions, it is important to conduct further studies to establish the role of medical therapy in non-PAH PH. (J Am Coll Cardiol 2009;54:S85-96) (C) 2009 by the American College of Cardiology Foundation
Resumo:
J Biol Inorg Chem (2011) 16:1241–1254 DOI 10.1007/s00775-011-0812-9