873 resultados para Fibres de lin


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les matériaux composites sont utilisés dans beaucoup de domaines pour leurs propriétés mécaniques spécifiques, leur mise en forme facile et leur bas coût. Cependant, lorsque les composites pétro-sourcées sont en fin de vie, le traitement des déchets a un fort impact environnemental. C’est pour cette raison que les industriels se tournent vers des matériaux bio-sourcés. Ils souhaitent ainsi abaisser le coût des matières premières mais aussi se donner une image plus « verte » grâce à l’utilisation de matériaux renouvelables et/ou compostables. Le projet présenté s’inscrit dans dans cette optique où il est question d’élaborer de nouveaux composites à renfort et matrices bio-sourcés et tout particulièrement des composites fibre de lin/acide polylactique (PLA). Ces derniers sont généralement appelés bio-composites. L’originalité de cette étude réside dans le traitement des fibres de lin afin de les compatibilité avec la matrice PLA. Le traitement consiste au greffage de dioxyde de titane sur la surface de fibres de lin fonctionnalisée par oxydation au TEMPO. Ces fibres longues sont ensuite utilisées comme renfort sous forme de tissu unidirectionnel dans la matrice PLA. Le comportement mécanique en traction, flexion et la résistance à l’impact de ces biocomposites sont étudiés afin d’analyser l’influence du traitement des fibres sur leur performances.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract : Natural materials have received a full attention in many applications because they are degradable and derived directly from earth. In addition to these benefits, natural materials can be obtained from renewable resources such as plants (i.e. cellulosic fibers like flax, hemp, jute, and etc). Being cheap and light in weight, the cellulosic natural fiber is a good candidate for reinforcing bio-based polymer composites. However, the hydrophilic nature -resulted from the presence of hydroxyl groups in the structure of these fibers- restricts the application of these fibers in the polymeric matrices. This is because of weak interfacial adhesion, and difficulties in mixing due to poor wettability of the fibers within the matrices. Many attempts have been done to modify surface properties of natural fibers including physical, chemical, and physico-chemical treatments but on the one hand, these treatments are unable to cure the intrinsic defects of the surface of the fibers and on the other hand they cannot improve moisture, and alkali resistance of the fibers. However, the creation of a thin film on the fibers would achieve the mentioned objectives. This study aims firstly to functionalize the flax fibers by using selective oxidation of hydroxyl groups existed in cellulose structure to pave the way for better adhesion of subsequent amphiphilic TiO[subscript 2] thin films created by Sol-Gel technique. This method is capable of creating a very thin layer of metallic oxide on a substrate. In the next step, the effect of oxidation on the interfacial adhesion between the TiO[subscript 2] film and the fiber and thus on the physical and mechanical properties of the fiber was characterized. Eventually, the TiO[subscript 2] grafted fibers with and without oxidation were used to reinforce poly lactic acid (PLA). Tensile, impact, and short beam shear tests were performed to characterize the mechanical properties while Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic mechanical analysis (DMA), and moisture absorption were used to show the physical properties of the composites. Results showed a significant increase in physical and mechanical properties of flax fibers when the fibers were oxidized prior to TiO[subscript 2] grafting. Moreover, the TiO[subscript 2] grafted oxidized fiber caused significant changes when they were used as reinforcements in PLA. A higher interfacial strength and less amount of water absorption were obtained in comparison with the reference samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette étude est destinée à la production et à la caractérisation des composites d’acide polylactique (PLA) et des fibres naturelles (lin, poudre de bois). Le moussage du PLA et ses composites ont également été étudiés afin d’évaluer les effets des conditions de moulage par injection et du renfort sur les propriétés finales de ces matériaux. Dans la première partie, les composites constitués de PLA et des fibres de lin ont été produits par extrusion suivit par un moulage en injection. L’effet de la variation du taux de charge (15, 25 et 40% en poids) sur les caractéristiques morphologique, mécanique, thermique et rhéologique des composites a été évalué. Dans la deuxième étape, la poudre de bois (WF) a été choisie pour renforcer le PLA. La préparation des composites de PLA et WF a été effectuée comme dans la première partie et une série complète de caractérisations morphologique, mécanique, thermique et l’analyse mécanique dynamique ont été effectués afin d’obtenir une évaluation complète de l’effet du taux de charge (15, 25 et 40% en poids) sur les propriétés du PLA. Finalement, la troisième partie de cette étude porte sur les composites de PLA et de renfort naturel afin de produire des composites moussés. Ces mousses ont été réalisées à l’aide d’un agent moussant exothermique (azodicarbonamide) via le moulage par injection, suite à un mélange du PLA et de fibres naturelles. Dans ce cas, la charge d’injection (quantité de matière injectée dans le moule: 31, 33, 36, 38 et 43% de la capacité de la presse à injection) et la concentration en poudre de bois (15, 25 et 40% en poids) ont été variées. La caractérisation des propriétés mécanique et thermique a été effectuée et les résultats ont démontré que les renforts naturels étudiés (lin et poudre de bois) permettaient d’améliorer les propriétés mécaniques des composites, notamment le module de flexion et la résistance au choc du polymère (PLA). En outre, la formation de la mousse était également efficace pour le PLA vierge et ses composites car les masses volumiques ont été significativement réduites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the implementation of vector bending sensors using long-period gratings (LPGs) UV-inscribed in flat-clad, four-core and D-shaped fibres. Our experiments reveal a strong fibre-orientation dependence of the spectral response when such LPGs are subjected to dynamic bending, which provided an opportunity to realize curvature measurement with direction recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an implementation of high-sensitivity optical chemsensors based on FBGs UV-inscribed in D-shape and multimode fibres and sensitized by HF-etching treatment, demonstrating a capability of detecting chemical concentration changes as small as < 0.5%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain and thermal sensitivities of germanate and tellurite glass fibres were measured using a fibre Fabry-Perot (FFP) interferometer and fibre Bragg gratings (FBG). The strain phase sensitivity for germanate and tellurite fibre were 5900×103 rad/m and 5600×103 rad/m respectively at a central wavelength of 1540nm using FFP interferometer, which is consistent with the value of 1.22pm/µepsilon obtained for a germanate fibre FBG. The Young's modulus for germanate and tellurite fibre were also measured to be 58GPa and 37GPa. The thermal responses of germanate fibre were examined as 24.71 and 16.80 pm/°C at 1540nm and 1033nm wavelength using the FBG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the implementation of vector bending sensors using long-period gratings (LPGs) UV-inscribed in flat-clad, four-core and D-shaped fibres. Our experiments reveal a strong fibre-orientation dependence of the spectral response when such LPGs are subjected to dynamic bending, which provided an opportunity to realize curvature measurement with direction recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain and thermal sensitivities of germanate and tellurite glass fibres were measured using a fibre Fabry-Perot (FFP) interferometer and fibre Bragg gratings (FBG). The strain phase sensitivity for germanate and tellurite fibre were 5900×103 rad/m and 5600×103 rad/m respectively at a central wavelength of 1540nm using FFP interferometer, which is consistent with the value of 1.22pm/µepsilon obtained for a germanate fibre FBG. The Young's modulus for germanate and tellurite fibre were also measured to be 58GPa and 37GPa. The thermal responses of germanate fibre were examined as 24.71 and 16.80 pm/°C at 1540nm and 1033nm wavelength using the FBG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an implementation of high-sensitivity optical chemsensors based on FBGs UV-inscribed in D-shape and multimode fibres and sensitized by HF-etching treatment, demonstrating a capability of detecting chemical concentration changes as small as < 0.5%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the limitation of the lens effect of the optical fibre and the inhomogeneity of the laser fluence on different cores, it is still challenging to controllably inscribe different fibre Bragg gratings (FBGs) in multicore fibres. In this article, we reported the FBG inscription in four core fibres (FCFs), whose cores are arranged in the corners of a square lattice. By investigating the influence of different inscription conditions during inscription, different results, such as simultaneous inscription of all cores, selectively inscription of individual or two cores, and even double scanning in perpendicular core couples by diagonal, are achieved. The phase mask scanning method, consisting of a 244nm Argon-ion frequencydoubled laser, air-bearing linear transfer stage and cylindrical lens and mirror setup, is used to precisely control the grating inscription in FCFs. The influence of three factors is systematically investigated to overcome the limitations, and they are the defocusing length between the cylindrical lens and the bare fibre, the rotation geometry of the fibre to the irritation beam, and the relative position of the fibre in the vertical direction of the laser beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates the advantages of using hardwood short fibre pulp (eucalyptus) as alternative to softwood long fibre pulp (pinus) and polymer fibres, traditionally used in reinforcement of cement-based materials. The effects of cellulose fibre length on microstructure and on mechanical performance of fibre-cement composites were evaluated before and after accelerated ageing cycles. Hardwood pulp fibres were better dispersed in the cement matrix and provided higher number of fibres per unitary weight or volume, in relation to softwood long fibre pulp. The short reinforcing elements lead to an effective crack bridging of the fragile matrix, which contributes to the improvement of the mechanical performance of the composite after ageing. These promising results show the potential of eucalyptus short fibres for reducing costs by both the partial replacement of expensive synthetic fibres in air curing process and the energy savings during pulp refining. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present work is to evaluate the effect of surface modification of cellulose pulp fibres on the mechanical and microstructure of fibre-cement composites. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) in an attempt to improve their durability into fibre-cement composites. The surface modification showed significant influence on the microstructure of the composites on the fibre-matrix interface and in the mineralization of the fibre lumen as seen by scanning electron microscopy (SEM) with back-scattered electron (BSE) detector. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites. Composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the mechanisms of degradation of fibre-cement composites. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The role of myoplasmic [Mg2+] on Ca2+ release from the sarcoplasmic reticulum (SR) was examined in the two major types of crustacean muscle fibres, the tonic, long sarcomere fibres and the phasic, short sarcomere fibres of the fresh mater decapod crustacean Cherax: destructor (yabby) and in the fast-twitch rat muscle fibres using the mechanically skinned muscle fibre preparation. 2. A robust Ca2+-induced Ca2+-release (CICR) mechanism was present in both long and short sarcomere fibres and 1 mM Mg2+ exerted a strong inhibitory action on the XR Ca2+ release in both fibre types. 3. The XR displayed different properties with respect to Ca2+ loading in the long and the short sarcomere fibres and marked functional differences were identified with respect to Mg2+ inhibition between the two crustacean fibre types. Thus, in long sarcomere fibres, the submaximally loaded XR was able to release Ca2+ when [Mg2+] was lowered from 1 to 0.01 mw in the presence of 8 mM ATP(total) and in the virtual absence of Ca2+ (< 5 nM) even when the CICR was suppressed. In contrast, negligible Ca2+ was released from the submaximally loaded SR of short sarcomere yabby fibres when [Mg2+] was lowered from 1. to 0.01 mM under the same conditions as for the long sarcomere fibres. Nevertheless, the rate of XR Ca2+ release in short sarcomere fibres increased markedly when [Mg2+] was lowered in the presence of [Ca2+] approaching the normal resting levels (50-100 nM). 4. Rat fibres were able to release SR Ca2+ at a faster rate than the long sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0.01 mM in the virtual absence of Ca2+ but, unlike with yabby fibres, the net rate of Ca2+ release was actually increased for conditions that were considerably less favourable to CICR. 5. In summary it is concluded that crustacean skeletal muscles have more that one functional type of Ca2+-release channels, that these channels display properties that are intermediate between those of mammalian skeletal and cardiac isoforms, that the inhibition exerted by Mg2+ at rest on the crustacean SR Ca2+-release channels must be removed during excitation-contraction coupling and that, unlike in crustacean fibres, CICR cannot play the major role in the activation of XR Ca2+-release channels in the rat skeletal muscle.