996 resultados para Fiber plant
Resumo:
Objetivou-se neste estudo avaliar as características agronômicas, a composição químico-bromatológica e a digestibilidade de 11 cultivares de milho (Zea mays) colhido em duas alturas de corte. As cultivares D 766, D 657, D 1000, P 3021, P 3041, C 805, C 333, AG 5011, FO 01, CO 9621 e BR 205 foram avaliadas quando colhidas 5 cm acima do solo (baixa) e 5 cm abaixo da inserção da primeira espiga (alta). O experimento foi delineado como blocos casualizados, com três repetições, arranjados em esquema fatorial 11 x 2. Os cultivares apresentaram produções semelhantes de matéria seca de forragem e de grãos. As porcentagens das frações colmo, folha, palha, sabugo e grão diferiram entre os cultivares, assim como os teores de matéria seca da planta inteira no momento da colheita. Considerando a planta inteira, apenas os teores de energia bruta, nitrogênio da fração fibra em detergente neutro e a digestibilidade in vitro da fibra em detergente neutro e detergente ácido não diferiram entre os cultivares. O aumento da altura de corte melhorou a qualidade da forragem, devido à redução das frações colmo e folha e dos teores dos constituintes da parede celular.
Resumo:
This paper aims to present the feasibility of using a composite using discarded material from the cultivation of banana tree (pseudostem), which is fibrillated together with synthetic resin replacing glass fiber to be used in structural elements that do not demand large mechanical stress such as reservoirs, troughs, domes, sewage pipes etc.. For this, there were studies about the mechanical properties of a composite made with polyester resin and fiber of banana tree (Musa sp, musac), in which the splints were removed from the pseudostem, being made fibrillation by hand, with the aid of a brush steel, followed by natural drying. After treatment for cleaning and removal of wax, the fiber was cut into pieces of approximately 60 mm to 100 mm, for, together with synthetic resin, make cards of a features fiber composite with random orientation relative to the weight of the resin. We used three different percentages of fiber (3%, 6% and 9%), in order to make a comparative study between them and what would be the one with the best performance. Were manufactured specimens of each material and then subjected to uniaxial tensile tests, three point bending, moisture absorption and thermal characteristics. The results show that, in general, the use of banana tree fiber is feasible simply by an improvement in the production process (machining of the procedure) and greater care in the manufacture of parts
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The study was conducted to evaluate six K:Ca:Mg ratios for production of two cultivars of mini tomato grown in substrate, in a greenhouse, during two growing seasons. The experimental design was randomized blocks with four replications and twelve treatments using both cultivars of mini tomato (Sweet Million and Sweet Grape) and six K:Ca:Mg ratios (4:3:1, 6:3:1, 6:4.5:1, 2.7:3:1, 2.7:2:1, 4:2:1) in nutrient solutions. In both experiments, nutrient solutions with the highest concentrations of Mg, (75 mg L-1) and the lowest concentrations of Ca, (150 mg L-1) led to the highest concentrations of those nutrients in plant dry matter. The Sweet Million cultivar had higher yield (1.69 kg plant-1 and 1.52 kg plant-1), number of fruits per plant (227 and 236), and water use efficiency (29.1 kg m-3 and 25.3 kg m-3). However, the Sweet Grape cultivar had fruits of higher mean weight (9.0 g and 8.8 g) and macronutrient content in the leaves. In both crop cycles, the different K:Ca:Mg ratios affected only the macronutrient contents of the mini tomato plants grown in substrate, with no effect on yield and water use efficiency. The first crop cycle showed the highest N, K, Ca and S content.
Resumo:
Bibliography: p. 19.
Resumo:
Cellular materials that are often observed in biological systems exhibit excellent mechanical properties at remarkably low densities. Luffa sponge is one of such materials with a complex interconnecting porous structure. In this paper, we studied the relationship between its structural and mechanical properties at different levels of its hierarchical organization from a single fiber to a segment of whole sponge. The tensile mechanical behaviors of three single fibers were examined by an Instron testing machine and the ultrastructure of a fractured single fiber was observed in a scanning electronic microscope. Moreover, the compressive mechanical behaviors of the foam-like blocks from different locations of the sponge were examined. The difference of the compressive stress-strain responses of four sets of segmental samples were also compared. The result shows that the single fiber is a porous composite material mainly consisting of cellulose fibrils and lignin/hemicellulose matrix, and its Young's modulus and strength are comparable to wood. The mechanical behavior of the block samples from the hoop wall is superior to that from the core part. Furthermore, it shows that the influence of the inner surface on the mechanical property of the segmental sample is stronger than that of the core part; in particular, the former's Young's modulus, strength and strain energy absorbed are about 1.6 times higher. The present work can improve our understanding of the structure-function relationship of the natural material, which may inspire fabrication of new biomimetic foams with desirable mechanical efficiency for further applications in anti-crushing devices and super-light sandwich panels.
Resumo:
Leaves and leaf sheath of banana and areca husk (Areca catechu) constitute an important component of urban solid waste (USW) in India which are difficult to degrade under normal windrow composting conditions. A successful method of anaerobic digestion built around the fermentation properties of these feedstock has been evolved which uses no moving parts, pretreatment or energy input while enabling recovery of four products: fiber, biogas, compost and pest repellent. An SRT of 27 d and 35 d was found to be optimum for fiber recovery for banana leaf and areca husk, respectively. Banana leaf showed a degradation pattern different from other leaves with slow pectin-1 degradation (80%) and 40% lignin removal in 27 d SRT. Areca husk however, showed a degradation pattern similar to other plant biomass. Mass recovery levels for banana leaf were fiber-20%, biogas-70% (400 ml/g TS) and compost-10%. For areca husk recovery was fiber-50%, biogas-45% (250 ml/g TS) and compost-5%. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Aristolochic acids (AAs) are the main bioactive ingredients in the most of Aristolochia plants, which are used to make dietary supplements, slimming pills and Traditional Chinese Medicines (TCMs). Excessive ingestion of AAs can lead to serious nephropathy. Therefore, quantitative analysis and quality control for the plants containing AAs is of great importance. In this paper, capillary electrophoresis (CE) with electrochemical detection (ED) at a 33 mu m carbon fiber microdisk electrode (CFE) has been applied to detect AA-I and AA-II in Aristolochia plants. Under the optimum conditions: detection potential at 1.20 V, 2.0 x 10(-2) mol L-1 phosphate buffer solution (PBS) (pH 10.0), injection time 25 s at a height of 17 cm and separation voltage at 12.5 kV, the AA-I and AA-II were baseline separated within 5 min. Low detection limits for AA-I and AA-II were 4.0 x 10(-8) mol L-1 and 1.0 x 10(-7) mol L-1, respectively. Wide linear ranges were from 4.0 x 10(-8) mol L-1 to 1.9 x 10(-5) mol L-1 and 1.0 X 10(-7) mol L-1 to 5.0 x 10(-5) mol L-1 for AA-I and AA-II, respectively. The proposed method has been successfully applied to analyze AAs contents in plant extracts. The results indicated that the contents of AAs in each part of Aristolochia debilis Sieb. Et Zucc.
Resumo:
The objective of the preset work is to develop optical fiber sensors for various physical and chemical parameters. As a part of this we initially investigated trace analysis of silica, ammonia, iron and phosphate in water. For this purpose the author has implemented a dual wavelength probing scheme which has many advantages over conventional evanescent wave sensors. Dual wavelength probing makes the design more reliable and repeatable and this design makes the sensor employable for concentration, chemical content, adulteration level, monitoring and control in industries or any such needy environments. Use of low cost components makes the system cost effective and simple. The Dual wavelength probing scheme is employed for the trace analysis of silica, iron, phosphate, and ammonia in water. Such sensors can be employed for the steam and water quality analysers in power plants. Few samples from a power plant are collected and checked the performance of developed system for practical applications.
Resumo:
Ancestral human populations had diets containing more indigestible plant material than present-day diets in industrialized countries. One hypothesis for the rise in prevalence of obesity is that physiological mechanisms for controlling appetite evolved to match a diet with plant fiber content higher than that of present-day diets. We investigated how diet affects gut microbiota and colon cells by comparing human microbial communities with those from a primate that has an extreme plant-based diet, namely, the gelada baboon, which is a grazer. The effects of potato (high starch) versus grass (high lignin and cellulose) diets on human-derived versus gelada-derived fecal communities were compared in vitro. We especially focused on the production of short-chain fatty acids, which are hypothesized to be key metabolites influencing appetite regulation pathways. The results confirmed that diet has a major effect on bacterial numbers, short-chain fatty acid production, and the release of hormones involved in appetite suppression. The potato diet yielded greater production of short-chain fatty acids and hormone release than the grass diet, even in the gelada cultures, which we had expected should be better adapted to the grass diet. The strong effects of diet on hormone release could not be explained, however, solely by short-chain fatty acid concentrations. Nuclear magnetic resonance spectroscopy found changes in additional metabolites, including betaine and isoleucine, that might play key roles in inhibiting and stimulating appetite suppression pathways. Our study results indicate that a broader array of metabolites might be involved in triggering gut hormone release in humans than previously thought. IMPORTANCE: One theory for rising levels of obesity in western populations is that the body's mechanisms for controlling appetite evolved to match ancestral diets with more low-energy plant foods. We investigated this idea by comparing the effects of diet on appetite suppression pathways via the use of gut bacterial communities from humans and gelada baboons, which are modern-day primates with an extreme diet of low-energy plant food, namely, grass. We found that diet does play a major role in affecting gut bacteria and the production of a hormone that suppresses appetite but not in the direction predicted by the ancestral diet hypothesis. Also, bacterial products were correlated with hormone release that were different from those normally thought to play this role. By comparing microbiota and diets outside the natural range for modern humans, we found a relationship between diet and appetite pathways that was more complex than previously hypothesized on the basis of more-controlled studies of the effects of single compounds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of plant growth regulators GA(3) 50 mg. L-1, NAA 100 mg. L-1, CCC 1500 mg.L-1 and SADH 3000 mg.L-1 on stem anatomy of Lycopersicon esculentum Mill cv. Angela Gigante were studied. Two sets of experiments were carried out in greenhouse during two separte periods. Anatomical studies,revealed that growth promoters induced increased xylem thickness and increased the number of tracheary elements while the growth retardants decreased xylem thickness and induced fiber formation.