920 resultados para Few clusters
Resumo:
Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics. However, how to draw inferences in DID models when there are few treated groups remains an open question. We show that the usual inference methods used in DID models might not perform well when there are few treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the number of observations per group, inference methods designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control groups. This happens because larger groups tend to have lower variance, generating heteroskedasticity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations per group. We then derive an alternative inference method that provides accurate hypothesis testing in situations where there are few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our method assumes that we know how the heteroskedasticity is generated, which is the case when it is generated by variation in the number of observations per group. With many pre-treatment periods, we show that this assumption can be relaxed. Instead, we provide an alternative application of our method that relies on assumptions about stationarity and convergence of the moments of the time series. Finally, we consider two recent alternatives to DID when there are many pre-treatment groups. We extend our inference method to linear factor models when there are few treated groups. We also propose a permutation test for the synthetic control estimator that provided a better heteroskedasticity correction in our simulations than the test suggested by Abadie et al. (2010).
Resumo:
Staphylococcus aureus is a major bovine mastitis pathogen. Although the reported antimicrobial resistance was generally low, the emergence of new genetic clusters in bovine mastitis requires examination of the link between antimicrobial resistance and genotypes. Here, amplified fragment length polymorphism (AFLP) profiles and standard antimicrobial resistance profiles were determined in order to characterize a total of 343 S. aureus cow mastitis isolates from two geographically close regions of Switzerland and France. AFLP profiles revealed similar population compositions in the two regions, with 4 major clusters (C8, C20, C97, and C151), but the proportions of isolates in each cluster significantly diverged between the two countries (P = 9.2 × 10⁻⁹). Antimicrobial resistance was overall low (< 5% resistance to all therapeutically relevant molecules), with the exception of penicillin resistance, which was detected in 26% of the isolates. Penicillin resistance proportions differed between clusters, with only 1 to 2% of resistance associated with C20 and C151 and up to 70% associated with bovine C97. The prevalence of C20 and C8 was unexpectedly high and requires further investigation into the mechanism of adaptation to the bovine host. The strong association of penicillin resistance with few clusters highlights the fact that the knowledge of local epidemiology is essential for rational choices of antimicrobial treatment in the absence of susceptibility testing. Taken together, these observations argue in favor of more routine scrutiny of antimicrobial resistance and antibiotic-resistant clones in cattle and the farm environment.
Resumo:
In this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days), number of clusters (10, 30 and 50 clusters) and internal weight softening parameter (Sigma) (0.30, 0.45 and 0.60). These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A) and 18 (B) days of culture growth. The validations demonstrated that in long-term experiments (Validation A) the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B), Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth.
Resumo:
La technique d’empreinte génétique par rep-PCR, qui utilise des séquences d’ADN répétitives, a été utilisée pour mettre en évidence la présence de groupes d’Escherichia coli signatures pour divers poulaillers et d’évaluer leur évolution suite au détassement. L’amorce (GTG)5 a été utilisée pour générer des empreintes d’ADN de 522 isolats provenant de 7 poulaillers échantillonnés deux fois : juste avant et 5 jours après le détassement. Les empreintes d’ADN ont été analysées selon l’algorithme de correspondance de bandes de Jaccard. Les analyses de Jackknife des coefficients de similitude ont révélé qu’entre 73% et 93% des isolats ont pu être correctement regroupés selon leur poulailler d’origine. Un dendrogramme construit à partir des coefficients de similitude de Jaccard a groupé les isolats dans 42 grappes avec près de la moitié dans une seule grappe. Environ 80% des isolats ont été groupés dans les 6 plus grosses grappes. Quatre de ces grappes été constituées majoritairement d’isolats provenant d’un seul site. Ces grappes pourraient être des grappes signatures qui permettraient d’identifier des poulaillers en particulier. La comparaison des nombres de grappes présentes avant et après le détassement a révélé une variabilité de l’impact du détassement sur les populations fécales d’E. coli. Pour certains sites, il y avait peu d’agrégats présents tant avant qu’après le détassement alors que pour d’autres sites c’était le contraire. Quoique plus de recherches soient nécessaires afin de valider les conclusions, nos résultats suggèrent la présence de sous-populations signatures d’E. coli pour certains poulaillers et une réponse variable à l’effet du détassement.
Resumo:
The nude mutation (nu) causes athymia and hairlessness, but the molecular mechanisms by which it acts have not been determined. To address the role of nu in thymogenesis, we investigated whether all or part of the nude thymic epithelium could be rescued by the presence of wild-type cells in nude <--> wild-type chimeric mice. Detailed immunohistochemical analyses revealed that nude-derived cells could persist in the chimeric thymus but could not contribute to cortical or medullary epithelial networks. Nude-derived cells, present in few clusters in the medulla, expressed markers of a rare subpopulation of adult medullary epithelium. The thymic epithelial rudiment of nude mice strongly expressed these same markers, which may therefore define committed immature thymic epithelial precursor cells. To our knowledge, these data provide the first evidence that the nu gene product acts cell-autonomously and is necessary for the development of all major subpopulations of mature thymic epithelium. We propose that nu acts to regulate growth and/or differentiation, but not determination, of thymic epithelial progenitors.
Resumo:
Context. Analysis of ages and metallicities of star clusters in the Magellanic Clouds provide information for studies on the chemical evolution of the Clouds and other dwarf irregular galaxies. Aims. The aim is to derive ages and metallicities from integrated spectra of 14 star clusters in the Small Magellanic Cloud, including a few intermediate/old age star clusters. Methods. Making use of a full-spectrum fitting technique, we compared the integrated spectra of the sample clusters to three different sets of single stellar population models, using two fitting codes available in the literature. Results. We derive the ages and metallicities of 9 intermediate/old age clusters, some of them previously unstudied, and 5 young clusters. Conclusions. We point out the interest of the newly identified as intermediate/old age clusters HW1, NGC 152, Lindsay 3, Lindsay 11, and Lindsay 113. We also confirm the old ages of NGC 361, NGC 419, Kron 3, and of the very well-known oldest SMC cluster, NGC 121.
Resumo:
The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M(13). First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first- principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M(13) structures. Several new lower energy configurations were identified, e. g., Pd(13), W(13), Pt(13), etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au(13), we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence, most of the properties can be explained by the chemistry picture of occupation of the bonding and antibonding states.
Resumo:
BACKGROUND: The evolutionary lineage leading to the teleost fish underwent a whole genome duplication termed FSGD or 3R in addition to two prior genome duplications that took place earlier during vertebrate evolution (termed 1R and 2R). Resulting from the FSGD, additional copies of genes are present in fish, compared to tetrapods whose lineage did not experience the 3R genome duplication. Interestingly, we find that ParaHox genes do not differ in number in extant teleost fishes despite their additional genome duplication from the genomic situation in mammals, but they are distributed over twice as many paralogous regions in fish genomes. RESULTS: We determined the DNA sequence of the entire ParaHox C1 paralogon in the East African cichlid fish Astatotilapia burtoni, and compared it to orthologous regions in other vertebrate genomes as well as to the paralogous vertebrate ParaHox D paralogons. Evolutionary relationships among genes from these four chromosomal regions were studied with several phylogenetic algorithms. We provide evidence that the genes of the ParaHox C paralogous cluster are duplicated in teleosts, just as it had been shown previously for the D paralogon genes. Overall, however, synteny and cluster integrity seems to be less conserved in ParaHox gene clusters than in Hox gene clusters. Comparative analyses of non-coding sequences uncovered conserved, possibly co-regulatory elements, which are likely to contain promoter motives of the genes belonging to the ParaHox paralogons. CONCLUSION: There seems to be strong stabilizing selection for gene order as well as gene orientation in the ParaHox C paralogon, since with a few exceptions, only the lengths of the introns and intergenic regions differ between the distantly related species examined. The high degree of evolutionary conservation of this gene cluster's architecture in particular - but possibly clusters of genes more generally - might be linked to the presence of promoter, enhancer or inhibitor motifs that serve to regulate more than just one gene. Therefore, deletions, inversions or relocations of individual genes could destroy the regulation of the clustered genes in this region. The existence of such a regulation network might explain the evolutionary conservation of gene order and orientation over the course of hundreds of millions of years of vertebrate evolution. Another possible explanation for the highly conserved gene order might be the existence of a regulator not located immediately next to its corresponding gene but further away since a relocation or inversion would possibly interrupt this interaction. Different ParaHox clusters were found to have experienced differential gene loss in teleosts. Yet the complete set of these homeobox genes was maintained, albeit distributed over almost twice the number of chromosomes. Selection due to dosage effects and/or stoichiometric disturbance might act more strongly to maintain a modal number of homeobox genes (and possibly transcription factors more generally) per genome, yet permit the accumulation of other (non regulatory) genes associated with these homeobox gene clusters.
Resumo:
The genetic dissection of the phenotypes associated with Williams-Beuren Syndrome (WBS) is advancing thanks to the study of individuals carrying typical or atypical structural rearrangements, as well as in vitro and animal studies. However, little is known about the global dysregulations caused by the WBS deletion. We profiled the transcriptomes of skin fibroblasts from WBS patients and compared them to matched controls. We identified 868 differentially expressed genes that were significantly enriched in extracellular matrix genes, major histocompatibility complex (MHC) genes, as well as genes in which the products localize to the postsynaptic membrane. We then used public expression datasets from human fibroblasts to establish transcription modules, sets of genes coexpressed in this cell type. We identified those sets in which the average gene expression was altered in WBS samples. Dysregulated modules are often interconnected and share multiple common genes, suggesting that intricate regulatory networks connected by a few central genes are disturbed in WBS. This modular approach increases the power to identify pathways dysregulated in WBS patients, thus providing a testable set of additional candidates for genes and their interactions that modulate the WBS phenotypes.
Resumo:
Research on transition-metal nanoalloy clusters composed of a few atoms is fascinating by their unusual properties due to the interplay among the structure, chemical order and magnetism. Such nanoalloy clusters, can be used to construct nanometer devices for technological applications by manipulating their remarkable magnetic, chemical and optical properties. Determining the nanoscopic features exhibited by the magnetic alloy clusters signifies the need for a systematic global and local exploration of their potential-energy surface in order to identify all the relevant energetically low-lying magnetic isomers. In this thesis the sampling of the potential-energy surface has been performed by employing the state-of-the-art spin-polarized density-functional theory in combination with graph theory and the basin-hopping global optimization techniques. This combination is vital for a quantitative analysis of the quantum mechanical energetics. The first approach, i.e., spin-polarized density-functional theory together with the graph theory method, is applied to study the Fe$_m$Rh$_n$ and Co$_m$Pd$_n$ clusters having $N = m+n \leq 8$ atoms. We carried out a thorough and systematic sampling of the potential-energy surface by taking into account all possible initial cluster topologies, all different distributions of the two kinds of atoms within the cluster, the entire concentration range between the pure limits, and different initial magnetic configurations such as ferro- and anti-ferromagnetic coupling. The remarkable magnetic properties shown by FeRh and CoPd nanoclusters are attributed to the extremely reduced coordination number together with the charge transfer from 3$d$ to 4$d$ elements. The second approach, i.e., spin-polarized density-functional theory together with the basin-hopping method is applied to study the small Fe$_6$, Fe$_3$Rh$_3$ and Rh$_6$ and the larger Fe$_{13}$, Fe$_6$Rh$_7$ and Rh$_{13}$ clusters as illustrative benchmark systems. This method is able to identify the true ground-state structures of Fe$_6$ and Fe$_3$Rh$_3$ which were not obtained by using the first approach. However, both approaches predict a similar cluster for the ground-state of Rh$_6$. Moreover, the computational time taken by this approach is found to be significantly lower than the first approach. The ground-state structure of Fe$_{13}$ cluster is found to be an icosahedral structure, whereas Rh$_{13}$ and Fe$_6$Rh$_7$ isomers relax into cage-like and layered-like structures, respectively. All the clusters display a remarkable variety of structural and magnetic behaviors. It is observed that the isomers having similar shape with small distortion with respect to each other can exhibit quite different magnetic moments. This has been interpreted as a probable artifact of spin-rotational symmetry breaking introduced by the spin-polarized GGA. The possibility of combining the spin-polarized density-functional theory with some other global optimization techniques such as minima-hopping method could be the next step in this direction. This combination is expected to be an ideal sampling approach having the advantage of avoiding efficiently the search over irrelevant regions of the potential energy surface.
Resumo:
Includes bibliography
Resumo:
Using fixed node diffusion quantum Monte Carlo (FN-DMC) simulations and density functional theory (DFT) within the generalized gradient approximations, we calculate the total energies of the relaxed and unrelaxed neutral, cationic, and anionic aluminum clusters, Al-n (n = 1-13). From the obtained total energies, we extract the ionization potential and electron detachment energy and compare with previous theoretical and experimental results. Our results for the electronic properties from both the FN-DMC and DFT calculations are in reasonably good agreement with the available experimental data. A comparison between the FN-DMC and DFT results reveals that their differences are a few tenths of electron volt for both the ionization potential and the electron detachment energy. We also observe two distinct behaviors in the electron correlation contribution to the total energies from smaller to larger clusters, which could be assigned to the structural transition of the clusters from planar to three-dimensional occurring at n = 4 to 5.
Resumo:
The encapsulation of magnetic transition-metal (TM) clusters inside carbon cages (fullerenes, nanotubes) has been of great interest due to the wide range of applications, which spread from medical sensors in magnetic resonance imaging to photonic crystals. Several theoretical studies have been reported; however, our atomistic understanding of the physical properties of encapsulated magnetic TM 3d clusters is far from satisfactory. In this work, we will report general trends, derived from density functional theory within the generalized gradient approximation proposed by Perdew, Burke, and Ernzerhof (PBE), for the encapsulation properties of the TMm@C-n (TM = Fe, Co, Ni; m = 2-6, n = 60,70,80,90) systems. Furthermore, to understand the role of the van der Waals corrections to the physical properties, we employed the empirical Grimme's correction (PBE + D2). We found that both PBE and PBE + D2 functionals yield almost the same geometric parameters, magnetic and electronic properties, however, PBE + D2 strongly enhances the encapsulation energy. We found that the center of mass of the TMm clusters is displaced towards the inside C-n surfaces, except for large TMm clusters (m = 5 and 6). For few cases, e. g., Co-4 and Fe-4, the encapsulation changes the putative lowest-energy structure compared to the isolated TMm clusters. We identified few physical parameters that play an important role in the sign and magnitude of the encapsulation energy, namely, cluster size, fullerene equatorial diameter, shape, curvature of the inside C-n surface, number of TM atoms that bind directly to the inside C-n surface, and the van der Waals correction. The total magnetic moment of encapsulated TMm clusters decreases compared with the isolated TMm clusters, which is expected due to the hybridization of the d-p states, and strongly depends on the size and shape of the fullerene cages.
Resumo:
The thesis reports the synthesis, and the chemical, structural and spectroscopic characterization of a series of new Rhodium and Au-Fe carbonyl clusters. Most new high-nuclearity rhodium carbonyl clusters have been obtained by redox condensation of preformed rhodium clusters reacting with a species in a different oxidation state generated in situ by mild oxidation. In particular the starting Rh carbonyl clusters is represented by the readily available [Rh7(CO)16]3- 9 compound. The oxidized species is generated in situ by reaction of the above with a stoichiometric defect of a mild oxidizing agents such as [M(H2O)x]n+ aquo complexes possessing different pKa’s and Mn+/M potentials. The experimental results are roughly in keeping with the conclusion that aquo complexes featuring E°(Mn+/M) < ca. -0.20 V do not lead to the formation of hetero-metallic Rh clusters, probably because of the inadequacy of their redox potentials relative to that of the [Rh7(CO)16]3-/2- redox couple. Only homometallic cluster s such as have been fairly selectively obtained. As a fallout of the above investigations, also a convenient and reproducible synthesis of the ill-characterized species [HnRh22(CO)35]8-n has been discovered. The ready availability of the above compound triggered both its complete spectroscopic and chemical characterization. because it is the only example of Rhodium carbonyl clusters with two interstitial metal atoms. The presence of several hydride atoms, firstly suggested by chemical evidences, has been implemented by ESI-MS and 1H-NMR, as well as new structural characterization of its tetra- and penta-anion. All these species display redox behaviour and behave as molecular capacitors. Their chemical reactivity with CO gives rise to a new series of Rh22 clusters containing a different number of carbonyl groups, which have been likewise fully characterized. Formation of hetero-metallic Rh clusters was only observed when using SnCl2H2O as oxidizing agent because. Quite all the Rh-Sn carbonyl clusters obtained have icosahedral geometry. The only previously reported example of an icosahedral Rh cluster with an interstitial atom is the [Rh12Sb(CO)27]3- trianion. They have very similar metal framework, as well as the same number of CO ligands and, consequently, cluster valence electrons (CVEs). .A first interesting aspect of the chemistry of the Rh-Sn system is that it also provides icosahedral clusters making exception to the cluster-borane analogy by showing electron counts from 166 to 171. As a result, the most electron-short species, namely [Rh12Sn(CO)25]4- displays redox propensity, even if disfavoured by the relatively high free negative charge of the starting anion and, moreover, behaves as a chloride scavenger. The presence of these bulky interstitial atoms results in the metal framework adopting structures different from a close-packed metal lattice and, above all, imparts a notable stability to the resulting cluster. An organometallic approach to a new kind of molecular ligand-stabilized gold nanoparticles, in which Fe(CO)x (x = 3,4) moieties protect and stabilize the gold kernel has also been undertaken. As a result, the new clusters [Au21{Fe(CO)4}10]5-, [Au22{Fe(CO)4}12]6-, Au28{Fe(CO)3}4{Fe(CO)4}10]8- and [Au34{Fe(CO)3}6{Fe(CO)4}8]6- have been isolated and characterized. As suggested by concepts of isolobal analogies, the Fe(CO)4 molecular fragment may display the same ligand capability of thiolates and go beyond. Indeed, the above clusters bring structural resemblance to the structurally characterized gold thiolates by showing Fe-Au-Fe, rather than S-Au-S, staple motives. Staple motives, the oxidation state of surface gold atoms and the energy of Au atomic orbitals are likely to concur in delaying the insulator-to-metal transition as the nuclearity of gold thiolates increases, relative to the more compact transition-metal carbonyl clusters. Finally, a few previously reported Au-Fe carbonyl clusters have been used as precursors in the preparation of supported gold catalysts. The catalysts obtained are active for toluene oxidation and the catalytic activity depends on the Fe/Au cluster loading over TiO2.
Resumo:
Clusters have increasingly become an essential part of policy discourses at all levels, EU, national, regional, dealing with regional development, competitiveness, innovation, entrepreneurship, SMEs. These impressive efforts in promoting the concept of clusters on the policy-making arena have been accompanied by much less academic and scientific research work investigating the actual economic performance of firms in clusters, the design and execution of cluster policies and going beyond singular case studies to a more methodologically integrated and comparative approach to the study of clusters and their real-world impact. The theoretical background is far from being consolidated and there is a variety of methodologies and approaches for studying and interpreting this phenomenon while at the same time little comparability among studies on actual cluster performances. The conceptual framework of clustering suggests that they affect performance but theory makes little prediction as to the ultimate distribution of the value being created by clusters. This thesis takes the case of Eastern European countries for two reasons. One is that clusters, as coopetitive environments, are a new phenomenon as the previous centrally-based system did not allow for such types of firm organizations. The other is that, as new EU member states, they have been subject to the increased popularization of the cluster policy approach by the European Commission, especially in the framework of the National Reform Programmes related to the Lisbon objectives. The originality of the work lays in the fact that starting from an overview of theoretical contributions on clustering, it offers a comparative empirical study of clusters in transition countries. There have been very few examples in the literature that attempt to examine cluster performance in a comparative cross-country perspective. It adds to this an analysis of cluster policies and their implementation or lack of such as a way to analyse the way the cluster concept has been introduced to transition economies. Our findings show that the implementation of cluster policies does vary across countries with some countries which have embraced it more than others. The specific modes of implementation, however, are very similar, based mostly on soft measures such as funding for cluster initiatives, usually directed towards the creation of cluster management structures or cluster facilitators. They are essentially founded on a common assumption that the added values of clusters is in the creation of linkages among firms, human capital, skills and knowledge at the local level, most often perceived as the regional level. Often times geographical proximity is not a necessary element in the application process and cluster application are very similar to network membership. Cluster mapping is rarely a factor in the selection of cluster initiatives for funding and the relative question about critical mass and expected outcomes is not considered. In fact, monitoring and evaluation are not elements of the cluster policy cycle which have received a lot of attention. Bulgaria and the Czech Republic are the countries which have implemented cluster policies most decisively, Hungary and Poland have made significant efforts, while Slovakia and Romania have only sporadically and not systematically used cluster initiatives. When examining whether, in fact, firms located within regional clusters perform better and are more efficient than similar firms outside clusters, we do find positive results across countries and across sectors. The only country with negative impact from being located in a cluster is the Czech Republic.