975 resultados para Fertilization – application rate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historically, sulfur (S) application has not been recommended on Iowa soils for corn and soybean production. Soils supply, or a combination from sources such as soil organic matter, profile sulfate, manure, and precipitation have met crop S needs. However, over the past few years, S deficiencies in alfalfa and corn have been documented. Large crop yield responses have been measured in some fields containing soils with low organic matter, side-slope landscape position, or coarse soil texture, especially in northeastern Iowa. The objective of this study was to determine S response in corn and soybean in north-central Iowa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Para todos os municípios Brasileiros foram coletados dados de área plantada, quantidade produzida, tipos de solos e uso do solo, para o Arroz, Feijão, Trigo, Milho e Soja. Com o auxílio de Sistema de Informações Geográficas (SIG), mapas foram elaborados, e a partir do cruzamento entre eles, produtividades por tipo de solo em áreas antropizadas foram obtidas. A partir das faixas de produtividades esperadas relativas às faixas de dosagem de adubação por nível de disponibilidade de macronutrientes primários (Nitrogênio, Fósforo e Potássio) no solo, recomendadas pela Embrapa (WebAgritec), considerou-se que cada município, sem nenhuma expansão de área, a partir de seu valor real de produtividade em 2011/12, aumentasse a mesma até o valor máximo esperado e correspondente à recomendação de dosagem de adubação relativa à faixa superior de produtividade. Considerou-se um período de dez anos para a subida de um patamar para outro de produtividade, o que permitiu um horizonte temporal das estimativas de 2011/12 até 2061/62. Projetaram-se os Consumos, Dosagens e Eficiências de Adubação, bem como os Balanços de CO2eq para os macronutrientes primários, necessários e resultantes destas novas condições. O horizonte e os volumes de produção agrícolas resultantes foram comparados com as projeções do MAPA 2021/22 e do Outlook Fiesp 2023. O potencial de volume de produção agrícola via fertilização destas cinco culturas e o impacto no balanço de CO2eq são então mensurados, culminando com a possibilidade de significativas antecipações deste volume em termos de número de safras e com o efeito benéfico no balanço de CO2eq, permitindo em virtude das áreas poupadas, postergação expressiva em termos de emissões de CO2eq

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type and rate of fertilizers influence the level of soil organic carbon (Corg) and total nitrogen (Nt) markedly, but the effect on C and N partitioning into different pools is open to question. The objectives of the present work were to: (i) quantify the impact of fertilizer type and rate on labile, intermediate and passive C and N pools by using a combination of biological, chemical and mathematical methods; (ii) explain previously reported differences in the soil organic matter (SOM) levels between soils receiving farmyard manure with or without biodynamic preparations by using Corg time series and information on SOM partitioning; and (iii) quantify the long-term and short-term dynamics of SOM in density fractions and microbial biomass as affected by fertilizer type and rate and determine the incorporation of crop residues into labile SOM fractions. Samples were taken from a sandy Cambisol from the long-term fertilization trial in Darmstadt, Germany, founded in 1980. The nine treatments (four field replicates) were: straw incorporation plus application of mineral fertilizer (MSI) and application of rotted farmyard manure with (DYN) or without (FYM) addition of biodynamic preparations, each at high (140 150 kg N ha-1 year-1; MSIH, DYNH, FYMH), medium (100 kg N ha-1 year-1; MSIM, DYNM, FYMM) and low (50 60 kg N ha-1 year-1; MSIL, DYNL, FYML) rates. The main findings were: (i) The stocks of Corg (t ha-1) were affected by fertilizer type and rate and increased in the order MSIL (23.6), MSIM (23.7), MSIH (24.2) < FYML (25.3) < FYMM (28.1), FYMH (28.1). Stocks of Nt were affected in the same way (C/N ratio: 11). Storage of C and N in the modelled labile pools (turnover times: 462 and 153 days for C and N, respectively) were not influenced by the type of fertilizer (FYM and MSI) but depended significantly (p ≤ 0.05) on the application rate and ranged from 1.8 to 3.2 t C ha 1 (7 13% of Corg) and from 90 to 140 kg N ha-1 (4-5% of Nt). In the calculated intermediate pool (C/N ratio 7), stocks of C were markedly higher in FYM treatments (15-18 t ha-1) compared to MSI treatments (12-14 t ha-1). This showed that differences in SOM stocks in the sandy Cambisol induced by fertilizer rate may be short-lived in case of changing management, but differences induced by fertilizer type may persist for decades. (ii) Crop yields, estimated C inputs (1.5 t ha-1 year-1) with crop residue, microbial bio¬mass C (Cmic, 118 150 mg kg-1), microbial biomass N (17 20 mg kg-1) and labile C and N pools did not differ significantly between FYM and DYN treatments. However, labile C increased linearly with application rate (R2 = 0.53) from 7 to 11% of Corg. This also applied for labile N (3.5 to 4.9% of Nt). The higher contents of Corg in DYN treatments existed since 1982, when the first sampling was conducted for all individual treatments. Contents of Corg between DYN and FYM treatments con-verged slightly since then. Furthermore, at least 30% of the difference in Corg was located in the passive pool where a treatment effect could be excluded. Therefore, the reported differences in Corg contents existed most likely since the beginning of the experiment and, as a single factor of biodynamic agriculture, application of bio-dynamic preparations had no effect on SOM stocks. (iii) Stocks of SOM, light fraction organic C (LFOC, ρ ≤ 2.0 g cm-3), light fraction organic N and Cmic decreased in the order FYMH > FYML > MSIH, MSIL for all sampling dates in 2008 (March, May, September, December). However, statistical significance of treatment effects differed between the dates, probably due to dif-ferences in the spatial variation throughout the year. The high proportion of LFOC on total Corg stocks (45 55%) highlighted the importance of selective preservation of OM as a stabilization mechanism in this sandy Cambisol. The apparent turnover time of LFOC was between 21 and 32 years, which agreed very well with studies with substantially longer vegetation change compared to our study. Overall, both approaches; (I) the combination of incubation, chemical fractionation and simple modelling and (II) the density fractionation; provided complementary information on the partitioning of SOM into pools of different stability. The density fractionation showed that differences in Corg stocks between FYM and MSI treatments were mainly located in the light fraction, i.e. induced by higher recalcitrance of the organic input in the FYM treatments. Moreover, the use of the combination of biological, chemical and mathematical methods indicated that effects of fertilizer rate on total Corg and Nt stocks may be short-lived, but that the effect of fertilizer type may persist for longer time spans in the sandy Cambisol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning the application of energy crop-derived BS on the carbon (C) and nitrogen (N) mineralization dynamics are scarce. Thus, this thesis focused on the following objectives: I) The determination of the effects caused by rainfall patterns on the C and N dynamics from two contrasting organic fertilizers, namely BS from maize silage and composted cattle manure (CM), by monitoring emissions of nitrous oxide (N2O), carbon dioxide (CO2) and CH4 as well as leaching losses of C and N. II) The investigation of the impact of differences in soil moisture content after the application of BS and temperature on gaseous emissions (CO2, N2O and CH4) and leaching of C and N compounds. III) A comparison of BS properties obtained from biogas plants with different substrate inputs and operating parameters and their effect on C and N dynamics after application to differently textured soils with varying application rates and water contents. For the objectives I) and II) two experiments (experiment I and II) using undisturbed soil cores of a Haplic Luvisol were carried out. Objective III) was studied on a third experiment (experiment III) with disturbed soil samples. During experiment I three rainfall patterns were implemented including constant irrigation, continuous irrigation with periodic heavy rainfall events, and partial drying with rewetting periods. Biogas slurry and CM were applied at a rate of 100 kg N ha-1. During experiment II constant irrigation and an irrigation pattern with partial drying with rewetting periods were carried out at 13.5°C and 23.5°C. The application of BS took place either directly before a rewetting period or one week after the rewetting period stopped. Experiment III included two soils of different texture which were mixed with ten BS’s originating from ten different biogas plants. Treatments included low, medium and high BS-N application rates and water contents ranging from 50% to 100% of water holding capacity (WHC). Experiment I and II showed that after the application of BS cumulative N2O emissions were 4 times (162 mg N2O-N m-2) higher compared to the application of CM caused by a higher content of mineral N (Nmin) in the form of ammonium (NH4+) in the BS. The cumulative emissions of CO2, however, were on the same level for both fertilizers indicating similar amounts of readily available C after composting and fermentation of organic material. Leaching losses occurred predominantly in the mineral form of nitrate (NO3-) and were higher in BS amended soils (9 mg NO3--N m-2) compared to CM amended soils (5 mg NO3--N m-2). The rainfall pattern in experiment I and II merely affected the temporal production of C and N emissions resulting in reduced CO2 and enhanced N2O emissions during stronger irrigation events, but showed no effect on the cumulative emissions. Overall, a significant increase of CH4 consumption under inconstant irrigation was found. The time of fertilization had no effect on the overall C and N dynamics. Increasing temperature from 13.5°C to 23.5°C enhanced the CO2 and N2O emissions by a factor of 1.7 and 3.7, respectively. Due to the increased microbial activity with increasing temperature soil respiration was enhanced. This led to decreasing oxygen (O2) contents which in turn promoted denitrification in soil due to the extension of anaerobic microsites. Leaching losses of NO3- were also significantly affected by increasing temperature whereas the consumption of CH4 was not affected. The third experiment showed that the input materials of biogas plants affected the properties of the resulting BS. In particular the contents of DM and NH4+ were determined by the amount of added plant biomass and excrement-based biomass, respectively. Correlations between BS properties and CO2 or N2O emissions were not detected. Solely the ammonia (NH3) emissions showed a positive correlation with NH4+ content in BS as well as a negative correlation with the total C (Ct) content. The BS-N application rates affected the relative CO2 emissions (% of C supplied with BS) when applied to silty soil as well as the relative N2O emissions (% of N supplied with BS) when applied to sandy soil. The impacts on the C and N dynamics induced by BS application were exceeded by the differences induced by soil texture. Presumably, due to the higher clay content in silty soils, organic matter was stabilized by organo-mineral interactions and NH4+ was adsorbed at the cation exchange sites. Different water contents induced highest CO2 emissions and therefore optimal conditions for microbial activity at 75% of WHC in both soils. Cumulative nitrification was also highest at 75% and 50% of WHC whereas the relative N2O emissions increased with water content and showed higher N2O losses in sandy soils. In summary it can be stated that the findings of the present thesis confirmed the high fertilizer value of BS’s, caused by high concentrations of NH4+ and labile organic compounds such as readily available carbon. These attributes of BS’s are to a great extent independent of the input materials of biogas plants. However, considerably gaseous and leaching losses of N may occur especially at high moisture contents. The emissions of N2O after field application corresponded with those of animal slurries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this experiment was to evaluate tiller population density and the dynamics of the tillering process in marandu palisade grass subjected to strategies of rotational stocking management and nitrogen fertilization. Treatments corresponded to combinations between two targets of pre-grazing conditions (sward surface height of 25 and 35 cm) and two rates of nitrogen application (50 and 200 kg ha-1 year-1), and were allocated to experimental units according to a 2 x 2 factorial arrangement in a randomised complete block design, with four replications. The following response variables were studied: initial (TPDi), intermediate (TPDm) and final (TPDf) tiller population density as well as the rates of tiller appearance (TAR) and death (TDR) and the tiller population stability index (SI). TPDi was similar to all treatments, with differences in tiller population density becoming more pronounced as the experiment progressed, resulting in larger TPDf on swards managed at 25 cm pre-grazing height. Tiller death was larger on swards managed at 35 cm, with differences in tiller appearance being recorded only from February 2010 onwards. Stability of tiller population was higher on swards managed at 25 cm pre-grazing height. Overall, there was no effect of nitrogen on the studied variables, and the most adequate grazing strategy corresponded to the pre-grazing height of 25 cm, regardless of the nitrogen application rate used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pHT = 7.4) and another where pH was more stable (lowest pHT = 7.8). The highest pHT at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pHT 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pHT 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Potassium (K) is an essential nutrient for higher plants. Information on K uptake and use efficiency of upland rice under Brazilian conditions is limited. A greenhouse experiment was conducted with the objective to evaluate influence of K on yield, K uptake, and use efficiency of six upland rice genotypes grown on Brazilian Oxisol. The K rate used was zero (natural soil level) and 200 mg K kg-1 of soil. Shoot dry weight and grain yield were significantly influenced by K level and genotype treatments. However, K x genotype interactions were not significant, indicating similar responses of genotypes at two K levels for shoot dry weight and grain yield. Genotypes produced grain yield in the order of BRS Primavera BRA 01596 BRSMG Curinga BRS 032033 BRS Bonanca BRA 02582. Potassium concentration in shoot was about sixfold greater compared to grain, across two K levels and six genotypes. However, K utilization efficiency ratio (KUER) (mg shoot or grain yield / mg K uptake in shoot or root) was about 6.5 times greater in grain compared to shoot, across two K level and six genotypes. Potassium uptake in shoot and grain and KUER were significantly and positively associated with grain yield. Soil calcium (Ca), K, base saturation, acidity saturation, Ca saturation, K saturation, Ca/K ratio, and magnesium (Mg)/K ratio were significantly influenced by K application rate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Field trials and laboratory bioassays were undertaken to compare the performance and efficacy (mortality of diamondback moth larvae) of insecticides applied to cabbages with three high volume hydraulic knapsack sprayers (NS-16, PB-20 and Selecta 12V) and a controlled droplet application (CDA) sprayer. In field experiments, the high volume knapsack sprayers (application rate 500-600 L ha(-1)) provided better spray coverage on the upper and lower surfaces of inner leaves, the upper surfaces of middle and outer leaves, and greater biological efficacy than the CDA sprayer (application rate 20similar to40 L ha(-1)). The PB-20 provided better spray coverage on the upper surface of middle leaves and both surfaces of outer leaves when compared with the Selecta 12V. However, its biological efficacy in the field was not significantly different from that of the other high volume sprayers. Increasing the application rate from 20 to 40 L ha(-1) for the CDA sprayer significantly increased droplet density but had no impact on test insect mortality. Laboratory evaluations of biological efficacy yielded higher estimates than field evaluations and there was no significant difference between the performance of the PB-20 and the CDA sprayer. Significant positive relationships were detected between insect mortality and droplet density deposited for both the PB-20 and the CDA sprayers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experiments were conducted to investigate the effect of Lolium rigidum (annual ryegrass) seed developmental stage and application rate of glyphosate and SpraySeed (paraquat 135 g/L+ diquat 115 g/L) on the number, germinability, and fitness of seeds produced. Glyphosate (450 g/L) was most effective when applied at a rate of 0.5-1 L/ha during heading and anthesis, reducing the number of filled seeds produced compared with unsprayed plants. Application post-anthesis, when seeds were at the milk to soft dough stage, was less effective. SpraySeed was most effective when applied post-anthesis, during the milk and early dough stages of seed development at a rate of 0.5-1L/ha, resulting in the production of few viable seeds. Although some filled seeds were produced, most of the seeds were dead. Application during anthesis or once the seeds reached soft dough stage was less effective. For both herbicides, those seeds that were capable of germinating were smaller and had slower radicle and coleoptile growth, resulting in slower early seedling growth and reduced biomass production within the first month of growth. Additionally, glyphosate application reduced the proportion of seeds exhibiting dormancy. The anticipated reduction in seed competitive ability and altered emergence timing resulting from late-season herbicide application, even when application timing is not optimal, could be exploited to reduce the likelihood of successful L. rigidum establishment in the following season.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Few studies on sugar cane have evaluated the root system of the crop, in spite of its importance. This is mainly due to the difficulty of evaluation and high variability of results. The objective of this study was to develop an evaluation method of the cane root system by means of probes so as to evaluate the mass, distribution and metabolically active roots related to N fertilization at planting. For this purpose, an experiment was conducted in an Arenic Kandiustults with medium texture in Jaboticabal/SP, in a randomized block design with four replications and four treatments: control (without N) and 40, 80 and 120 kg ha-1 of N applied in the form of urea in the planting furrow of the cane variety SP81 3250. One week before harvest, a urea-15N solution was applied at the cane stalk base to detect active metabolism in the root system. Trenches of 1.5 m length and 0.6 m depth were opened between two sugar cane rows for root sampling by two methods: monoliths (0.3, 0.2 and 0.15 m wide, deep and long respectively) taken from the trench wall and by probe (internal diameter 0.055 m). For each method, 15 samples per plot were collected. The roots were separated from the soil in a sieve (2 mm mesh), oven-dried (at 65 ºC) and the dry matter was measured. Root sampling by probes resulted in root mass that did not differ from the evaluation in monoliths, indicating that this evaluation method may be used for sugar cane root mass, although neither the root distribution in the soil profile nor the rhizome mass were efficiently evaluated, due to the small sample volume. Nitrogen fertilization at planting did not result in a greater root accumulation in the sugar cane plant, but caused changes in the distribution of the root system in the soil. The absence of N fertilization led to a better root distribution in the soil profile, with 50, 34 and 16 % in the 0-0.2, 0.2-0.4 and 0.4-0.6 m layers, respectively; in the fertilized treatments the roots were concentrated in the surface layer, with on average 70, 17 and 13 % for the same layers. The metabolically active roots were concentrated in the center of the cane stool, amounting to 40 % of the total root mass, regardless of N fertilization (application of 120 kg ha-1 N or without N).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACT Ectomycorrhizal fungi (EMF) may improve the adaptation of eucalypts saplings to field conditions and allow more efficient fertilizer use. The effectiveness of EMF inoculum application in promoting fungal colonization, plant growth, nutrient uptake, and the quality of rooted cuttings was evaluated forEucalyptus urophylla under commercial nursery conditions. For inoculated treatments, fertilization of the sapling substrate was reduced by 50 %. The experiment was carried out in a completely randomized design in a 4 × 4 factorial arrangement, wherein the factors were inoculum application rates of 0 (control), 5, 10, and 15 gel beads of calcium alginate containing the vegetative mycelium of Amanita muscaria, Elaphomyces antracinus, Pisolithus microcarpus, andScleroderma areolatum, plus a non-inoculated treatment without fertilization reduction in the substrate (commercial). Ectomycorrhizal fungi increased plant growth and fungal colonization as well as N and K uptake evenly. The best plant growth and fungal colonization were observed for the highest application rate. The greatest growth and fungal colonization and contents of P, N, and K were observed at the 10-bead rate. Plant inoculation with Amanita muscaria, Elaphomyces anthracinus, and Scleroderma areolatum increased P concentrations and contents in a differential manner. The Dickson Quality Index was not affected by the type of fungi or by inoculum application rates. Eucalypt rooted cuttings inoculated with ectomycorrhizal fungi and under half the amount of commercial fertilization had P, N, and K concentrations and contents greater than or equal to those of commercial plants and have high enough quality to be transplanted after 90 days.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The application of pulp and paper mill (PPM) sludge in agriculture and forestry has been acknowledged as soil amendments and a plant nutrient source. The main objectives of this study were to evaluate the total cost of the use of recycled nutrients from PPM sludge in fast growing pulpwood production, and the financial profitability of fast growing pulpwood production with the use of these recycled nutrients. The investment and production costs of fast growing pulpwood plantation were directly acquired from a previous research, while the other data was compiled through different studies. The total cost of the use of PPM sludge was evaluated based on assumed factors. Discounted cash flow method was used to evaluate the financial profitability, using NPV and IRR as indicators. The results of estimated sludge nutrient contents were 16.2 g N, 2.9 g P, and 2.4 g K kg-1 of dry sludge. The sludge application rate was estimated at 1.36 Mg/ha in the first year. The total cost of the use of PPM sludge involved transport and spreading cost of US$49.15/dry ton. The fertilization cost applied in the financial model was designed in 3 different options and their results were as follows: option (1) was taken directly from the reference research (US$97/ha); option (2) was the use of sludge alone (US$66.75/ha); and option (3) was the use of sludge and TSP fertilizer (US$83.80/ha). The average NPV without discounting was US$248,180 while the IRRs ranged between approximately 3-4% with an average of 3.63%. Although option (2) and (3) contributed to higher IRRs compared to option (1), this increase was still not significant as the IRR was not sensitive to the total fertilization cost. The advantages are that this practice can be performed at a lower cost and the application rate can be still increased if necessary. It is better for forest plantations compared to agriculture and consequently supports reforestation program. In addition, it can be similarly applied in wood biomass production. A disadvantage is that the IRRs were not very favorable compared to the criterion of 11%. The sludge high in C:N ratio can cause nitrogen immobilization, and regulatory concerns may restrict and complicate the use of sludge landspreading and contribute to additional costs and processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A better understanding of effects after digestate application on plant community, soil microbial community as well as nutrient and carbon dynamics is crucial for a sustainable grassland management and the prevention of species and functional diversity loss. The specific research objectives of the thesis were: (i) to investigate effects after digestate application on grass species and soil microbial community, especially focussing on nitrogen dynamic in the plant-soil system and to examine the suitability of the digestate from the “integrated generation of solid fuel and biogas from biomass” (IFBB) system as fertilizer (Chapter 3). (ii) to investigate the relationship between plant community and functionality of soil microbial community of extensively managed meadows, taking into account temporal variations during the vegetation period and abiotic soil conditions (Chapter 4). (iii) to investigate the suitability of IFBB-concept implementation as grassland conservation measure for meadows and possible associated effects of IFBB digestate application on plant and soil microbial community as well as soil microbial substrate utilization and catabolic evenness (Chapter 5). Taken together the results indicate that the digestate generated during the IFBB process stands out from digestates of conventional whole crop digestion on the basis of higher nitrogen use efficiency and that it is useful for increasing harvestable biomass and the nitrogen content of the biomass, especially of L. perenne, which is a common species of intensively used grasslands. Further, a medium application rate of IFBB digestate (50% of nitrogen removed with harvested biomass, corresponding to 30 50 kg N ha-1 a-1) may be a possibility for conservation management of different meadows without changing the functional above- and belowground characteristic of the grasslands, thereby offering an ecologically worthwhile alternative to mulching. Overall, the soil microbial biomass and catabolic performance under planted soil was marginally affected by digestate application but rather by soil properties and partly by grassland species and legume occurrence. The investigated extensively managed meadows revealed a high soil catabolic evenness, which was resilient to medium IFBB application rate after a three-year period of application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Physic nut (Jatropha curcas L.) is a perennial oilseed species that has aroused economic interest for biodiesel production. Among other factors, it is essential to determine the nutritional demands of this species to facilitate raising it as a crop. This study aimed to evaluate the early growth and mineral nutrition of physic nut, as well as soil fertility, as affected by phosphorus fertilization. The study was carried out in a plastic greenhouse in a completely randomized block experimental design with four replicates. The plants were grown in plastic pots filled with 50 dm³ of Latossolo Vermelho (Rhodic Hapludox). Application rates of 0, 50, 100, 150 and 200 mg dm-3 of P were tested, plus a control. Evaluations of plant height and root collar diameter were performed monthly. The experiment was ended 150 days after transplant of the seedlings, at which time leaf area, dry weight, leaf contents and total accumulation of macro- (N, P, K, Ca, Mg and S) and micronutrients (B, Cu, Fe, Mn and Zn) were performed, and soil chemical properties were analyzed. We concluded that absence of P fertilization alone is as limiting to early growth of physic nut as simultaneous absence of soil amendment and fertilization. The rate of 57 mg dm-3 of P may be recommended for initial growth of physic nut. The total accumulation of nutrients in physic nut seedlings exhibited the following order: K>N>Mg>Ca>P>S>Fe>Mn>B>Zn>Cu. Phosphorus fertilization resulted in increased soil cation exchange capacity (CEC).