114 resultados para Ferroelectricity.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

. Measurement of the relation between polarisation P and electric field E for lithium potassium sulphate (LiKSO4) was made in the low temperature range below room temperature. The P-E hysteresis loops along the c axis of LiKSO4 were observed in the low-temperature phase below the lower transition point Ttl of about -70 degrees C, and in the intermediate phase below the upper transition point Ttu of about -25 degrees C. These phases were found to be ferroelectric. The temperature dependence of the spontaneous polarisation Ps and the electric coercive field Ec were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the dielectric proper-ties of bismuth aluminate and gallate with Bi:AI(Ga) ratio of 1: 1 and 12:1 prepared at high temperature and ambient pressure. These compounds crystallize in a noncentrosymmetric body-centered cubic structure (space group 123) with a similar to 10.18 angstrom rather than in the perovskite structure.This cubic phase is related to the gamma-Bi2O3 structure which has the actual chemical formula Bi-24(3+) (Bi3+Bi5+)O40-delta. In the aluminates and gallates studied by us, the Al and Ga ions are distributed over the 24f and 2a sites. These compounds exibit ferroclectric hysteresis at room temperature with a weak polarization. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of dielectric studies of deuterated TAAP grown at different temperatures are reported. These results together with the Raman spectral data show that 100% deuteration is possible only if the crystals are grown at low temperatures. The transition temperature continuously increases with increasing deuterium content from 45°C for TAAP to ∼ 87°C for DTAAP indicating that hydrogen bonds play an important role in the ferroelectric transition of this crystal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The alum family of double salts with the general formula M1+M3+(RO4)2.12H2O where M1+ is a monovalent ion (M1+ = K, Rb, Cs, Tl, NH4, CH3NH3, NH3OH3 NH3NH2, etc.) and M3+ is a trivalent metal such as Al, Fe, Cr, V, In, Ga, etc. and R is S or Se, form an isomorphous series and their general features indicate a common cubic space group Pa3. Lipson1 showed subsequently that there exist three different structure types agr, β and γ and the structure of a particular alum is dependent on the radius of the monovalent atom. The agr structure is typical of medium sized ions, the β of the larger ones and the γ of the small Na atom.2 Ferroelectricity has been reported only in alums containing NH4, CH3NH3, NH3NH3 and NH3OH. Their hindered rotations as well as the influence of sulphate group disorder on the dielectric behaviour of alums is still not clear.3 No study of the temperature dependence of the low frequency dielectric constant of some of the alums, particularly those of Cs, Rb and Tl, have been made so The present investigation was undertaken to correlate their dielectric behaviour with their composition and structural differences. Under the same experimental conditions, methyl ammonium and ammonium alums also were studied and compared with the known data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of cw wide-line proton magnetic resonance investigations on ammonium sulphate and rubidium ammonium sulphate are presented. The pressure and temperature dependence of some of the properties of ammonium sulphate are explained stressing the importance of the role of the ammonium ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BaTiO3/BaZrO3 superlattices with varying periodicities were grown on SrRuO3 buffered MgO (001) substrates by pulsed laser ablation. Ferroelectric measurements were done and correlated to the strain in the heterostructures. The results of ferroelectric measurements indicate an apparent suppression of polarization in the low period superlattices and the onset of weakly ferroelectric behavior in higher period superlattices. Measured switchable polarization values indicate that contribution is primarily from the BaTiO3 in the structure. These results have been correlated to the interfacial strain and the critical thickness of BaTiO3 when grown over tensile substrates such as MgO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determine the nature of coupled phonons and magnetic excitations in AlFeO3 using inelastic light scattering from 5 to 315 K covering a spectral range from 100 to 2200 cm(-1) and complementary first-principles density functional theory-based calculations. A strong spin-phonon coupling and magnetic ordering-induced phonon renormalization are evident in (1) anomalous temperature dependence of many modes with frequencies below 850 cm(-1), particularly near the magnetic transition temperature T-c approximate to 250 K, and (2) distinct changes in band positions of high-frequency Raman bands between 1100 and 1800 cm(-1); in particular, a broad mode near 1250 cm(-1) appears only below T-c, attributed to the two-magnon Raman scattering. We also observe weak anomalies in the mode frequencies similar to 100 K due to a magnetically driven ferroelectric phase transition. Understanding of these experimental observations has been possible on the basis of first-principles calculations of the phonons' spectrum and their coupling with spins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple approach for obtaining room temperature ferroelectricity in ZnO rod structures at the nanoscale is reported. A systematic comparative study between two kinds of nanorods prepared by different processes reveals the physics behind it. It is observed that ZnO nanorods grown (in-situ) by a sol gel method on platinum substrate show ferroelectric behaviour. On the contrary, ZnO nanorods first grown by a sol gel method and then spin-coated on a platinum substrate (ex-situ) do not demonstrate this kind of feature. X-ray diffraction analysis confirms partially (002) and (100) plane oriented growth of both samples. From photoluminescence (PL) spectral analysis it is interpreted that oxygen vacancies/zinc interstitial defects, which arises from the large lattice mismatch between the Pt substrate and the ZnO nanorods grown thereon, and preferential ZnO growth along 002], can be causes of this type of phenomena. C-V characterization, P-E hysteresis loop along with piezoelectric force microscopy support this observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is great interest in lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O-3 (15/10BCTZ) because of its exceptionally large piezoelectric response Liu and Ren, Phys. Rev. Lett. 103, 257602 (2009)]. In this paper, we have analyzed the nature of: (i) crystallographic phase coexistence at room temperature, (ii) temperature-and field-induced phase transformation to throw light on the atomistic mechanisms associated with the large piezoelectric response of this system. A detailed temperature-dependent dielectric and lattice thermal expansion study proved that the system exhibits a weak dielectric relaxation, characteristic of a relaxor ferroelectric material on the verge of exhibiting a normal ferroelectric-paraelectric transformation. Careful structural analysis revealed that a ferroelectric state at room temperature is composed of three phase coexistences, tetragonal (P4mm)+ orthorhombic (Amm2) + rhombohedral (R3m). We also demonstrate that the giant piezoresponse is associated with a significant fraction of the tetragonal phase transforming to rhombohedral. It is argued that the polar nanoregions associated with relaxor ferroelectricity amplify the piezoresponse by providing an additional degree of intrinsic structural inhomogeneity to the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsed-laser deposition has been used to fabricate Au/Ba0.5Sr0.5TiO3/SrRuO3/MgO thin film capacitor structures. Crystallographic and microstructural investigations indicated that the Ba0.5Sr0.5TiO3 (BST) had grown epitaxially onto the SrRuO3 lower electrode, inducing in-plane compressive and out- of-plane tensile strain in the BST. The magnitude of strain developed increased systematically as film thickness decreased. At room temperature this composition of BST is paraelectric in bulk. However, polarization measurements suggested that strain had stabilized the ferroelectric state, and that the decrease in film thickness caused an increase in remanent polarization. An increase in the paraelectric-ferroelectric transition temperature upon a decrease in thickness was confirmed by dielectric measurements. Polarization loops were fitted to Landau-Ginzburg-Devonshire (LGD) polynomial expansion, from which a second order paraelectric-ferroelectric transition in the films was suggested at a thickness of similar to500 nm. Further, the LGD analysis showed that the observed changes in room temperature polarization were entirely consistent with strain coupling in the system. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on an accurate first principles description of the energetics in H-bonded potassium-dihydrogen-phosphate crystals, we conduct a first study of nuclear quantum effects and of the changes brought about by deuteration. Tunneling is allowed only for clusters involving correlated protons and heavy ion displacements, the main effect of deuteration being a depletion of the proton probability density at the O-H-O bridge center, which in turn weakens its proton-mediated covalent bonding. The ensuing lattice expansion couples self-consistently with the proton off-centering, thus explaining both the giant isotope effect and its close connection with geometrical effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of extensive first-principles calculations we studied the ferroelectric phase transition and the associated isotope effect in KH2PO4 (KDP). Our calculations revealed that the spontaneous polarization of the ferroelectric phase is due to electronic charge redistributions and ionic displacements which are a consequence of proton ordering, and not vice versa. The experimentally observed double-peaked proton distribution in the paraelectric phase cannot be explained by a dynamics of only protons. This requires, instead, collective displacements within clusters that include also the heavier ions. These tunneling clusters can explain the recent evidence of tunneling obtained from Compton scattering measurements. The sole effect of mass change upon deuteration is not sufficient to explain the huge isotope effect. Instead, we find that structural modifications deeply connected with the chemistry of the H bonds produce a feedback effect on tunneling that strongly enhances the phenomenon. The resulting influence of the geometric changes on the isotope effect agrees with experimental data from neutron scattering. Calculations under pressure allowed us to analyze the issue of universality in the disappearance of ferroelectricity upon compression. Compressing DKDP so that the distance between the two peaks in the deuteron distribution is the same as for protons in KDP, corresponds to a modification of the underlying double-well potential, which becomes 23 meV shallower. This energy difference is what is required to modify the O-O distance in such a way as to have the same distribution for protons and deuterons. At the high pressures required experimentally, the above feedback mechanism is crucial to explain the magnitude of the geometrical effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

175 nm-thick Ba0.5Sr0.5TiO3 (BST) thin film fabricated by pulsed laser deposition (PLD) technique is found to be a mixture of two distributions of material. We discuss whether these two components are nano-regions of paraelectric and ferroelectric phases, or a bimodal grain-size distribution, or an effect of oxygen vacancy gradient from the electrode interface. The fraction of switchable ferroelectric phase decreases under bipolar pulsed fields, but it recovers after removal of the external fields. The plot of capacitance in decreasing dc voltage (C(Vdown arrow) versus that in increasing dc 61 voltage C(Vup arrow) is a superposition of overlapping of two triangles, in contrast to one well-defined triangle for typical ferroelectric SrBi2Ta2O9 thin films.