999 resultados para Ferroelectric composites


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper a piezoelectric composite membranes were developed for charge generator to promoter bone regeneration on defects sites. Is known that the osteogenesis process is induced by interactions between biological mechanisms and electrical phenomena. The membranes were prepared by mixing Barium Titanate (BT) powders and PVDF-TrFE (PVDF:TrFE = 60:40 mol%) on dimethylformamide medium. This precursor solution was dried and crystallized at 100degreesC for 12 hours. Composites membranes were obtained by following methods: solvent casting (SC), spincoating (SP), solvent extraction by water addition (WS) and hot pressing (HP).The microstructural analysis performed by SEM showed connectivity type 3-0 and 3-1 with high homogeneity for samples of ceramic volume fraction major than 0.50. Powder agglomerates within the polymer matrix was evidenced were observed for composites with the BT volume fraction major than 40%. The composite of ceramic fraction of 0.55 presented the best values of remanent polarization (similar to33 muC/cm(2)), but the flexibility of these composites with the larger ceramic fraction was significantly affected.For in vivo evaluation PVDF-TrFE/BT 90/10 membranes with 3cm larger were longitudinally implanted under tibiae of male rabbit. After 21 days the animals were sacrificed. By histological analyses were observed neo formed bone with a high mitotic activity. In the interface bone-membrane was evidenced a pronounced callus formation. These results encourage further applications of these membranes in bone-repair process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass nanocomposites in the system (1-x)Li2B4O7-xBi(2)WO(6) (0 less than or equal to x less than or equal to 0.35, in molar ratio) were fabricated by splat quenching technique. The as-quenched samples were X-ray amorphous. Differential Thermal Analyses (DTA) confirmed their glassy nature. The composites on heat-treatment at 720 K yielded monophasic crystalline bismuth tungstate in lithium borate glass matrix. The average size and the spherical nature of the dispersed crystallites were assessed via High Resolution Transmission Electron Microscopy (HRTEM). The dielectric constants (epsilon(r)) of both the as-quenched and post heat-treated composites were found to increase with increase in x (bismuth tungstate content) at all the frequencies (100 Hz-40 MHz) in the temperature range 300 K-870 K. While the dielectric loss (D) decreased with increasing x. The pyroelectric coefficients of the as-quenched (consisting 20 nm sized crystallites) and 720 K heat-treated sample (x = 0.3) were determined as a function of temperature (300 K-873 K) and the values obtained at room temperature were 20 and 60 muC/m(2) K respectively. The as-quenched and heat-treated (720 K) glass nanocomposites exhibited ferroelectric (P Vs E) hysteresis loops. The remnant polarization and coercive field of the heat-treated glass nanocomposite at 300 K were respectively 2.597 muC/cm(2) and 543 V/cm. These glass nanocomposites were birefringent in the 300-873 K temperature range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study systematically investigates the phenomenon of internal clamping in ferroelectric materials through the formation of glass-ceramic composites. Lead-free 0.715Bi(0.5)Na(0.5)TiO(3)-0.065BaTiO(3)-0.22SrTiO(3) (BNT-BT-ST) bulk ferroelectric ceramic was selected for the course of investigation. 3BaO - 3TiO(2) - B2O3 (BTBO) glass was then incorporated systematically to create sintered samples containing 0%, 2%, 4% and 6% glass (by weight). Upon glass induction features like remnant polarization, saturation polarization, hysteresis losses and coercive field could be varied as a function of glass content. Such effects were observed to benefit derived applications like enhanced energy storage density similar to 174 k J/m(3) to similar to 203 k J/m(3) and pyroelectric coefficient 5.7x10(-4) Cm-2K-1 to 6.8x10(-4) Cm-2K-1 by incorporation of 4% glass. Additionally, BNT-BT-ST depolarization temperature decreased from 457K to 431K by addition of 4% glass content. Glass incorporation could systematically increases diffuse phase transition and relaxor behavior temperature range from 70 K to 81K and 20K to 34 K, respectively when 6% and 4% glass content is added which indicates addition of glass provides better temperature stability. The most promising feature was observed to be that of dielectric response tuning. It can be also used to control (to an extent) the dielectric behavior of the host ceramic. Dielectric permittivity and losses decreased from 1278 to 705 and 0.109 to 0.107 for 6% glass, at room temperature. However this reduction in dielectric constant and loss increases pyroelectric figures of merit (FOMs) for high voltage responsivity (F-v) high detectivity (F-d) and energy harvesting (F-e) from 0.018 to 0.037 m(2)C(-1), 5.89 to 8.85 mu Pa-1/2 and 28.71 to 61.55 Jm(-3)K(-2), respectively for 4% added ceramic-glass at room temperature. Such findings can have huge implications in the field of tailoring ferroelectric response for application specific requirements. (C) 2015 Author(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-phase magnetoelectric multiferroics are ferroelectric materials that display some form of magnetism. In addition, magnetic and ferroelectric order parameters are not independent of one another. Thus, the application of either an electric or magnetic field simultaneously alters both the electrical dipole configuration and the magnetic state of the material. The technological possibilities that could arise from magnetoelectric multiferroics are considerable and a range of functional devices has already been envisioned. Realising these devices, however, requires coupling effects to be significant and to occur at room temperature. Although such characteristics can be created in piezoelectric-magnetostrictive composites, to date they have only been weakly evident in single-phase multiferroics. Here in a newly discovered room temperature multiferroic, we demonstrate significant room temperature coupling by monitoring changes in ferroelectric domain patterns induced by magnetic fields. An order of magnitude estimate of the effective coupling coefficient suggests a value of ~1 × 10-7 sm-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible and free-standing films of piezoelectric composites made up of lead zirconate titanate (PZT) ceramic powder dispersed in a castor oil-based polyurethane (PU) matrix were obtained by spin coating and characterised as materials for sensor applications. The piezoelectric coefficients d(31) and d(33) were measured with the usual technique. The piezoelectric charge constant d(33) yields values up to less than or equal to 24 pC/N, even at lower PZT content (33 vol%). Some desirable properties like piezoelectricity, flexibility and good mechanical resistance show this new material to be a good alternative for use as sensors and actuators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible piezo- and pyroelectric composite was made in the thin film form by spin coating. Lead Zirconate Titanate (PZT) ceramic powder was dispersed in a castor oil-based polyurethane (PU) matrix, providing a composite with 0-3 connectivity. The dielectric data, measured over a wide range of frequency (10(-5) Hz to 105 Hz), shows a loss peak around 100 Hz related with impurities in the polymer matrix. There is also an evidence of a peak in the range 10(-4) Hz, possibly originating from the glass transition temperature T of the polymer. The pyroelectric coefficient at 34 K is 7.0x10(-5) C(.)m(-2.)K(-1) which is higher than that of P-PVDF (1X10(-5) C(.)m(-2.)K(-1)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SrBi2Ta2O9 ferroelectric thick films were prepared by electrophoretic deposition (EPD). For that, ceramic powders were prepared by chemical method in order to obtain compounds with chemical homogeneity. The polymeric precursor method was used for the synthesis of the SrBi2Ta2O9 powder. The crystallographic structure of the powder was examined by X-ray diffraction, and the surface area was determined by single point BET adsorption. The 0.03 vol% suspension was formed by dispersing the powder in water using two different polymers as dispersants: an ester polyphosphate (C213) and an ammonium polyacrilate (Darvan 821-A). The influence of the different dispersants on the powder surface properties were investigated by zeta potential measurements. The films were deposited on platinum-coated alumina and Pt/Ti/SiO2/Si substrates by electrophoretic deposition using a 4 mA constant current, for 10 min, with two parallel electrodes placed at a separation distance of 3 min in the suspension. Several cycles of deposition-drying of the deposit was carried out until the desired thickness was obtained. After thermal treatment at temperatures ranging from 700 to 1000degreesC, the films were characterized by X-ray diffraction and scanning electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferroelectric ceramic particles based on lead titanate zirconate (PZT) were dispersed in a polymer matrix based on castor oil. After the poling process, the pyroelectric activity of this composite was measured using a direct method in which a linear heating rate was applied to the pre-poled samples. The pyroelectric coefficient at 343 K is comparable with that of a PZT-poly(vinylidene fluoride) (PVDF) composite and significantly higher than that of PVDF. © 1998 Kluwer Academic Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible and free-standing films of piezoelectric composites made up of lead zirconate titanate (PZT) ceramic powder dispersed in a castor oil-based polyurethane (PU) matrix were obtained by spin coating and characterized as materials for sensor applications. The piezoelectric coefficients d 31 and d 33 were measured with the usual technique. The piezoelectric charge constant d 33 yields values up to ≤24 pC/N, even at lower PZT content (33 vol%). Some desirable properties like piezoelectricity, flexibility and good mechanical resistance show this new material to be a good alternative for use as sensors and actuators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferroic materials, as notable members of smart materials, have been widely used in applications that perform sensing, actuation and control. The macroscopic property change of ferroic materials may become remarkably large during ferroic phase transition, leading to the fact that the macroscopic properties can be tuned by carefully applying a suitable external field (electric, magnetic, stress). To obtain an enhancement in physical and/or mechanical properties, different kinds of ferroic composites have been fabricated. The properties of a ferroic composite are determined not only by the properties and relative amounts of the constituent phases, but also by the microstructure of individual phase such as the phase connectivity, phase size, shape and spatial arrangement. This dissertation mainly focuses on the computational study of microstructure – property – mechanism relations in two representative ferroic composites, i.e., two-phase particulate magnetoelectric (ME) composite and polymer matrix ferroelectric composite. The former is a great example of ferroic composite exhibiting a new property and functionality that neither of the constituent phases possesses individually. The latter well represents the kind of ferroic composites having property combinations that are better than the existing materials. Phase field modeling was employed as the computing tool, and the required models for ferroic composites were developed based on existing models for monolithic materials. Extensive computational simulations were performed to investigate the microstructure-property relations and the underlying mechanism in ferroic composites. In particulate, it is found that for ME composite 0-3 connectivity (isolated magnetostrictive phase) is necessary to exhibit ME effect, and small but finite electrical conductivity of isolated magnetic phase can beneficially enhance ME effect. It is revealed that longitudinal and transverse ME coefficients of isotropic 0-3 particulate composites can be effectively tailored by controlling magnetic domain structures without resort to anisotropic two-phase microstructures. Simulations also show that the macroscopic properties of the ferroelectricpolymer composites critically depend on the ferroelectric phase connectivity while are not sensitive to the sizes and internal grain structures of the ceramic particles. Texturing is found critical to exploit the paraelectric«ferroelectric phase transition and nonlinear polarization behavior in paraelectric polycrystal and its polymer matrix composite. Additionally, a Diffuse Interface Field model was developed to simulate packing and motion in liquid phase which is promising for studying the fabrication of particulatepolymer composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a straightforward production pathway of polymer matrix composites with increased dielectric constant for dielectric elastomer actuators (DEAs). Up to date, the approach of using composites made of high dielectric constant ceramics and insulating polymers has not evidenced any improvement in the performance of DEA devices, mainly as a consequence of the ferroelectric nature of the employed ceramics. We propose here an unexplored alternative to these traditional fillers, introducing calcium copper titanate (CCTO) CaCu3Ti4O12, which has a giant dielectric constant making it very suitable for capacitive applications. All CCTO-polydimethylsiloxane (PDMS) composites developed display an improved electro-mechanical performance. The largest actuation improvement was achieved for the composite with 5.1 vol% of CCTO, having an increment in the actuation strain of about 100% together with a reduction of 25% in the electric field compared to the raw PDMS matrix.