1000 resultados para Fermionic Lipkin model
Resumo:
The interplay between temperature and q-deformation in the phase transition properties of many-body systems is studied in the particular framework of the collective q-deformed fermionic Lipkin model. It is shown that in phase transitions occuring in many-fermion systems described by su(2)q-like models are strongly influenced by the q-deformation.
Resumo:
Assuming q-deformed commutation relations for the fermions, an extension of the standard Lipkin Hamiltonian is presented. The usual quasi-spin representation of the standard Lipkin model is also obtained in this q-deformed framework. A variationally obtained energy functional is used to analyse the phase transition associated with the spherical symmetry breaking. The only phase transitions in this q-deformed model are of second order. As an outcome of this analysis a critical parameter is obtained which is dependent on the deformation of the algebra and on the number of particles.
Resumo:
We propose a schematic model to study the formation of excitons in bilayer electron systems. The phase transition is signalized both in the quantum and classical versions of the model. In the present contribution we show that not only the quantum ground state but also higher energy states, up to the energy of the corresponding classical separatrix orbit, ""sense"" the transition. We also show two types of one-to-one correspondences in this system: On the one hand, between the changes in the degree of entanglement for these low-lying quantum states and the changes in the density of energy levels; on the other hand, between the variation in the expected number of excitons for a given quantum state and the behavior of the corresponding classical orbit.
Time evolution of the Wigner function in discrete quantum phase space for a soluble quasi-spin model
Resumo:
The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.
Resumo:
We propose an approach which allows one to construct and use a potential function written in terms of an angle variable to describe interacting spin systems. We show how this can be implemented in the Lipkin-Meshkov-Glick, here considered a paradigmatic spin model. It is shown how some features of the energy gap can be interpreted in terms of a spin tunneling. A discrete Wigner function is constructed for a symmetric combination of two states of the model and its time evolution is obtained. The physical information extracted from that function reinforces our description of phase oscillations in a potential. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Using the flexibility and constructive definition of the Schwinger bases, we developed different mapping procedures to enhance different aspects of the dynamics and of the symmetries of an extended version of the two-level Lipkin model. The classical limits of the dynamics are discussed in connection with the different mappings. Discrete Wigner functions are also calculated. © 1995.
Resumo:
The purpose of our work is to extend the formulation of classical affine Toda Models in the presence of jump defects to pure fermionic Thirring model. As a first attempt we construct the Lagrangian of the Grassmanian Thirring model with jump defect (of Backlund type) and present its conserved modified momentum and energy expressions giving a first indication of its integra-bility. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
Resumo:
Starting from a phenomenological Hamiltonian originally written in terms of angular momentum operators we derive a new quantum angle-based Hamiltonian that allows for a discussion on the quantum spin tunneling. The study of the applicability of the present approach, carried out in calculations with a soluble quasi-spin model, shows that we are allowed to use our method in the description of physical systems such as the Mn12-acetate molecule, as well as the octanuclear iron cluster, Fe8, in a reliable way. With the present description the interpretation of the spin tunneling is seen to be direct, the spectra and energy barriers of those systems are obtained, and it is shown that they agree with the experimental ones. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Using the Langevin approach for stochastic processes, we study the renormalizability of the massive Thirring model. At finite fictitious time, we prove the absence of induced quadrilinear counterterms by verifying the cancellation of the divergencies of graphs with four external lines. This implies that the vanishing of the renormalization group beta function already occurs at finite times.
Resumo:
We examine a Lipkin based two-level pairing model at finite temperature and in the thermodynamic limit. Whereas at T = 0 the model exhibits a superconducting ground state for sufficiently high values of the coupling constant, a partially superconducting phase in which some of the particles are paired, is found to survive at high temperatures in a special treatment. This phase is a mixture of abnormally-occupied eigenstates, which lie at higher energy, of the interactionless model Hamiltonian.
Resumo:
We show that the ground-state energy of the q-deformed Lipkin-Meshkov-Glick Hamiltonian can be estimated by q-deformed coherent states. We also use these coherent states to analyse qualitatively the suppression of the second order ground-state energy phase transition of this model. © 1993.
Resumo:
We analyze generalized CP symmetries of two-Higgs doublet models, extending them from the scalar to the fermion sector of the theory. We show that, other than the usual CP transformation, there is only one of those symmetries which does not imply massless charged fermions. That single model which accommodates a fermionic mass spectrum compatible with experimental data possesses a remarkable feature. Through a soft breaking of the symmetry it displays a new type of spontaneous CP violation, which does not occur in the scalar sector responsible for the symmetry breaking mechanism but, rather, in the fermion sector.
Resumo:
We have investigated, in the L-S coupling scheme, the appearance of triplet pairing in fermionic droplets in which a single nl shell is active. The method is applied to a constant-strength model, for which we discuss the different phase transitions that take place as the number of particles in the shell is varied. Drops of 3He atoms can be plausible physical scenarios for the realization of the model.
Resumo:
We propose an alternative formulation of the Standard Model which reduces the number of free parameters. In our framework, fermionic fields are assigned to fundamental representations of the Lorentz and the internal symmetry groups, whereas bosonic field variables transform as direct products of fundamental representations of all symmetry groups. This allows us to reduce the number of fundamental symmetries. We formulate the Standard Model by considering the SU(3) and SU(2) symmetry groups as the underlying symmetries of the fundamental interactions. This allows us to suggest a model, for the description of the interactions of the intermediate bosons among themselves and interactions of fermions, that makes use of just two parameters. One parameter characterizes the symmetric phase, whereas the other parameter (the asymmetry parameter) gives the breakdown strength of the symmetries. All coupling strengths of the Standard Model are then derived in terms of these two parameters. In particular, we show that all fermionic electric charges result from symmetry breakdown.