938 resultados para Fermi-Coulomb correlations
Resumo:
The contributions of the correlated and uncorrelated components of the electron-pair density to atomic and molecular intracule I(r) and extracule E(R) densities and its Laplacian functions ∇2I(r) and ∇2E(R) are analyzed at the Hartree-Fock (HF) and configuration interaction (CI) levels of theory. The topologies of the uncorrelated components of these functions can be rationalized in terms of the corresponding one-electron densities. In contrast, by analyzing the correlated components of I(r) and E(R), namely, IC(r) and EC(R), the effect of electron Fermi and Coulomb correlation can be assessed at the HF and CI levels of theory. Moreover, the contribution of Coulomb correlation can be isolated by means of difference maps between IC(r) and EC(R) distributions calculated at the two levels of theory. As application examples, the He, Ne, and Ar atomic series, the C2-2, N2, O2+2 molecular series, and the C2H4 molecule have been investigated. For these atoms and molecules, it is found that Fermi correlation accounts for the main characteristics of IC(r) and EC(R), with Coulomb correlation increasing slightly the locality of these functions at the CI level of theory. Furthermore, IC(r), EC(R), and the associated Laplacian functions, reveal the short-ranged nature and high isotropy of Fermi and Coulomb correlation in atoms and molecules
Resumo:
We work out a semiclassical theory of shot noise in ballistic n+-i-n+ semiconductor structures aiming at studying two fundamental physical correlations coming from Pauli exclusion principle and long-range Coulomb interaction. The theory provides a unifying scheme which, in addition to the current-voltage characteristics, describes the suppression of shot noise due to Pauli and Coulomb correlations in the whole range of system parameters and applied bias. The whole scenario is summarized by a phase diagram in the plane of two dimensionless variables related to the sample length and contact chemical potential. Here different regions of physical interest can be identified where only Coulomb or only Pauli correlations are active, or where both are present with different relevance. The predictions of the theory are proven to be fully corroborated by Monte Carlo simulations.
Resumo:
Electron transport in a self-consistent potential along a ballistic two-terminal conductor has been investigated. We have derived general formulas which describe the nonlinear current-voltage characteristics, differential conductance, and low-frequency current and voltage noise assuming an arbitrary distribution function and correlation properties of injected electrons. The analytical results have been obtained for a wide range of biases: from equilibrium to high values beyond the linear-response regime. The particular case of a three-dimensional Fermi-Dirac injection has been analyzed. We show that the Coulomb correlations are manifested in the negative excess voltage noise, i.e., the voltage fluctuations under high-field transport conditions can be less than in equilibrium.
Resumo:
The evolution with increasing Coulomb correlations of a semiconductor to a magnetic insulator is related to an excited-state crossover in pi-electron models for conjugated polymers. We associate strong fluorescence with a lowest singlet excitation S1 that is dipole allowed, on the band side, while S1 becomes two-photon allowed on the correlated side. S1/S2 crossovers in Hubbard, Pariser-Parr-Pople, or other chains with electron-hole symmetry and alternating transfer integral t(1 +/- delta) are based on exact results at delta=0 and 1, on molecular exciton theory at large delta, and on oligomer calculations up to twelve sites.
Resumo:
Many-body effects are known to play a crucial role in the electronic and optical properties of solids and nanostructures. Nevertheless, the majority of theoretical and numerical approaches able to capture the influence of Coulomb correlations are restricted to the linear response regime. In this work, we introduce an approach based on a real-time solution of the electronic dynamics. The proposed approach reduces to the well-known Bethe-Salpeter equation in the linear limit regime and it makes it possible, at the same time, to investigate correlation effects in nonlinear phenomena. We show the flexibility and numerical stability of the proposed approach by calculating the dielectric constants and the effect of a strong pulse excitation in bulk h-BN.
Resumo:
We present a theoretical investigation of shot-noise properties in nondegenerate elastic diffusive conductors. Both Monte Carlo simulations and analytical approaches are used. Two interesting phenomena are found: (i) the display of enhanced shot noise for given energy dependences of the scattering time, and (ii) the recovery of full shot noise for asymptotic high applied bias. The first phenomenon is associated with the onset of negative differential conductivity in energy space that drives the system towards a dynamical electrical instability in excellent agreement with analytical predictions. The enhancement is found to be strongly amplified when the dimensionality in momentum space is lowered from three to two dimensions. The second phenomenon is due to the suppression of the effects of long-range Coulomb correlations that takes place when the transit time becomes the shortest time scale in the system, and is common to both elastic and inelastic nondegenerate diffusive conductors. These phenomena shed different light in the understanding of the anomalous behavior of shot noise in mesoscopic conductors, which is a signature of correlations among different current pulses.
Resumo:
Within a drift-diffusion model we investigate the role of the self-consistent electric field in determining the impedance field of a macroscopic Ohmic (linear) resistor made by a compensated semi-insulating semiconductor at arbitrary values of the applied voltage. The presence of long-range Coulomb correlations is found to be responsible for a reshaping of the spatial profile of the impedance field. This reshaping gives a null contribution to the macroscopic impedance but modifies essentially the transition from thermal to shot noise of a macroscopic linear resistor. Theoretical calculations explain a set of noise experiments carried out in semi-insulating CdZnTe detectors.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude approximate to e(2)/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime.
Resumo:
Coulomb suppression of shot noise in a ballistic diode connected to degenerate ideal contacts is analyzed in terms of the correlations taking place between current fluctuations due to carriers injected with different energies. By using Monte Carlo simulations we show that at low frequencies the origin of Coulomb suppression can be traced back to the negative correlations existing between electrons injected with an energy close to that of the potential barrier present in the diode active region and all other carriers injected with higher energies. Correlations between electrons with energy above the potential barrier with the rest of electrons are found to influence significantly the spectra at high frequency in the cutoff region.
Resumo:
Electronic, magnetic, or structural inhomogeneities ranging in size from nanoscopic to mesoscopic scales seem endemic and are possibly generic to colossal magnetoresistance manganites and other transition metal oxides. They are hence of great current interest and understanding them is of fundamental importance. We show here that an extension, to include long-range Coulomb interactions, of a quantum two-fluid l-b model proposed recently for manganites [Phys. Rev. Lett. 92, 157203 (2004)] leads to an excellent description of such inhomogeneities. In the l-b model two very different kinds of electronic states, one localized and polaronic (l) and the other extended or broad band (b) coexist. For model parameters appropriate to manganites and even within a simple dynamical mean-field theory (DMFT) framework, it describes many of the unusual phenomena seen in manganites, including colossal magnetoresistance (CMR), qualitatively and quantitatively. However, in the absence of long-ranged Coulomb interaction, a system described by such a model would actually phase separate, into macroscopic regions of l and b electrons, respectively. As we show in this paper, in the presence of Coulomb interactions, the macroscopic phase separation gets suppressed and instead nanometer scale regions of polarons interspersed with band electron puddles appear, constituting a kind of quantum Coulomb glass. We characterize the size scales and distribution of the inhomogeneity using computer simulations. For realistic values of the long-range Coulomb interaction parameter V-0, our results for the thresholds for occupancy of the b states are in agreement with, and hence support, the earlier approach mentioned above based on a configuration averaged DMFT treatment which neglects V-0; but the present work has features that cannot be addressed in the DMFT framework. Our work points to an interplay of strong correlations, long-range Coulomb interaction, and dopant ion disorder, all inevitably present in transition metal oxides as the origin of nanoscale inhomogeneities rather than disorder frustrated phase competition as is generally believed. As regards manganites, it argues against explanations for CMR based on disorder frustrated phase separation and for an intrinsic origin of CMR. Based on this, we argue that the observed micrometer (meso) scale inhomogeneities owe their existence to extrinsic causes, e.g., strain due to cracks and defects. We suggest possible experiments to validate our speculation.
Resumo:
This is a study of ultra-cold Fermi gases in different systems. This thesis is focused on exotic superfluid states, for an example on the three component Fermi gas and the FFLO phase in optical lattices. In the two-components case, superfluidity is studied mainly in the case of the spin population imbalanced Fermi gases and the phase diagrams are calculated from the mean-field theory. Different methods to detect different phases in optical lattices are suggested. In the three-component case, we studied also the uniform gas and harmonically trapped system. In this case, the BCS theory is generalized to three-component gases. It is also discussed how to achieve the conditions to get an SU(3)-symmetric Hamiltonian in optical lattices. The thesis is divided in chapters as follows: Chapter 1 is an introduction to the field of cold quantum gases. In chapter 2 optical lattices and their experimental characteristics are discussed. Chapter 3 deals with two-components Fermi gases in optical lattices and the paired states in lattices. In chapter 4 three-component Fermi gases with and without a harmonic trap are explored, and the pairing mechanisms are studied. In this chapter, we also discuss three-component Fermi gases in optical lattices. Chapter 5 devoted to the higher order correlations, and what they can tell about the paired states. Chapter 6 concludes the thesis.
Resumo:
Within the Grassmannian U(2N)/U(N) x U(N) nonlinear sigma-model representation of localization, one can study the low-energy dynamics of both a free and interacting electron gas. We study the crossover between these two fundamentally different physical problems. We show how the topological arguments for the exact quantization of the Hall conductance are extended to include the Coulomb interaction problem. We discuss dynamical scaling and make contact with the theory of variable range hopping. (C) 2005 Pleiades Publishing, Inc.