999 resultados para Fermentation media


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flour-rich waste (FRW) and by-product streams generated by bakery, confectionery and wheat milling plants could be employed as the sole raw materials for generic fermentation media production, suitable for microbial oil synthesis. Wheat milling by-products were used in solid state fermentations (SSF) of Aspergillus awamori for the production of crude enzymes, mainly glucoamylase and protease. Enzyme-rich SSF solids were subsequently employed for hydrolysis of FRW streams into nutrient-rich fermentation media. Batch hydrolytic experiments using FRW concentrations up to 205 g/L resulted in higher than 90%(w/w) starch to glucose conversion yields and 40% (w/w) total Kjeldahl nitrogen to free amino nitro-gen conversion yields. Starch to glucose conversion yields of 98.2, 86.1 and 73.4% (w/w) were achieved when initial FRW concentrations of 235, 300 and 350 g/L were employed in fed-batch hydrolytic experiments, respectively. Crude hydrolysates were used as fermentation media in shake flask cultures with the oleaginous yeast Lipomyces starkeyi DSM 70296 reaching a total dry weight of 30.5 g/L with a microbial oil content of 40.4% (w/w), higher than that achieved in synthetic media. Fed-batch bioreactor cultures led to a total dry weight of 109.8 g/L with a microbial oil content of 57.8% (w/w) and productivity of 0.4 g/L/h.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to evaluate the survivability of Bifidobacterium breve NCIMB 702257 in a three malt-based media supplemented with cysteine and yeast extract, and to determine the protective effect of these growth factors. A number of parameterised mathematical models were used to predict of kinetics of viability and total acidity during storage at different temperatures. Results demonstrated a good fit to the experimental mathematical model. The Arrhenius equations showed only reasonable fits and the polynomial plots contained a large area without data between 4 and 25 degrees C. In addition, it was shown that cysteine promotes growth and acid production by bifidobacteria, but does not extend survivability. On the other hand, increasing the yeast extract content of the fermentation media enhances the survivability of B. breve. To our knowledge, this is the first study to address the modelling of the survivability of probiotic bacteria in a cereal based fermentation media at different temperatures, introducing a more quantitative approach to the study of the shelf-life of a probiotic product. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By-products streams from a sunflower-based biodiesel plant were utilised for the production of fermentation media that can be used for the production of polyhydroxyalkanoates (PHA). Sunflower meal was utilised as substrate for the production of crude enzyme consortia through solid state fermentation (SSF) with the fungal strain Aspergillus oryzae. Fermented solids were subsequently mixed with unprocessed sunflower meal aiming at the production of a nutrient-rich fermentation feedstock. The highest free amino nitrogen (FAN) and inorganic phosphorus concentrations achieved were 1.5 g L-1 and 246 mg L-1, respectively, when an initial proteolytic activity of 6.4 U mL-1 was used. The FANconcentrationwas increased to 2.3 g L-1 when the initial proteolytic activity was increased to 16 U mL-1. Sunflower meal hydrolysates were mixed with crude glycerol to provide fermentationmedia that were evaluated for the production of poly(3-hydroxybutyrateco- 3-hydroxyvalerate) (P(3HB-co-3HV)) using Cupriavidus necator DSM545. The P(3HB-co-3HV) (9.9 g l-1) produced contained 3HB and 3HV units with 97 and 3 mol %, respectively. Integrating PHA production in existing 1st generation biodiesel production plants through valorisation of by-product streams could improve their sustainability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Xylitol bioproduction from lignocellulosic residues comprises hydrolysis of the hemicellulose, detoxification of the hydrolysate, bioconversion of the xylose, and recovery of xylitol from the fermented hydrolysate. There are relatively few reports on xylitol recovery from fermented media. In the present study, ion-exchange resins were used to clarify a fermented wheat straw hemicellulosic hydrolysate, which was then vacuum-concentrated and submitted to cooling in the presence of ethanol for xylitol crystallization. RESULTS: Sequential adsorption into two anion-exchange resins (A-860S and A-500PS) promoted considerable reductions in the content of soluble by-products (up to 97.5%) and in medium coloration (99.5%). Vacuum concentration led to a dark-colored viscous solution that inhibited xylitol crystallization. This inhibition could be overcome by mixing the concentrated medium with a commercial xylitol solution. Such a strategy led to xylitol crystals with up to 95.9% purity. The crystallization yield (43.5%) was close to that observed when using commercial xylitol solution (51.4%). CONCLUSION: The experimental data demonstrate the feasibility of using ion-exchange resins followed by cooling in the presence of ethanol as a strategy to promote the fast recovery and purification of xylitol from hemicellulose-derived fermentation media. (c) 2008 Society of Chemical Industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis Entitled Marine actinomycetes as source of antimicrobial compounds and as probiotics and single cell protein for application in penaeid peawn culture systems. Ocean harbours more than 80% of all life on earth and remains our greatest untapped natural resource. The study revealed the potential of marine actinomycetes as a source of antimicrobial compounds. The selected streptomycetes were found to be capable of inhibiting most of the pathogenic vibrios, whichis a major problem both in hatcheries and grow out systems. The bioactive principle can be incorporated with commercial feeds and applied as medicated diet for the control of vibrios in culture systems.The hydrolytic potential inhibitory property against pathogens and non—pathogenicity to penaeid prawns make the selected Streptomycesspp.an effective probioic in aquaculture. Since there is considerably less inhibition to the natural in pond ecosystem the microbial diversityis being maintained and thereby the water quality. Actinomycetes was found to be a good source of single cell protein as an ingredient inaquaculture feed formulations. Large amount of mycelial waste (actinomycete biomassO is produced from antibiotic industries and this nutrient rich waste can be effectively used as a protein source in aquaculture feeds.This study reveals the importance of marine actinomycetes as a source of antimicrobial compounds and as a probiotic and single cell protein for aquaculture applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crude enzymes produced via solid state fermentation (SSF) using wheat milling by-products have been employed for both fermentation media production using flour-rich waste (FRW) streams and lysis of Rhodosporidium toruloides yeast cells. Filter sterilization of crude hydrolysates was more beneficial than heat sterilization regarding yeast growth and microbial oil production. The initial carbon to free amino nitrogen ratio of crude hydrolysates was optimized (80.2 g/g) in fed-batch cultures of R. toruloides leading to a total dry weight of 61.2 g/L with microbial oil content of 61.8 % (w/w). Employing a feeding strategy where the glucose concentration was maintained in the range of 12.2 – 17.6 g/L led to the highest productivity (0.32 g/L∙h). The crude enzymes produced by SSF were utilised for yeast cell treatment leading to simultaneous release of around 80% of total lipids in the broth and production of a hydrolysate suitable as yeast extract replacement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The proposal of this work was to study the effects of lecithin and soy oil on the fermentative performance of Saccharomyces uvarum I Z 1904, a yeast used in the industrial production of ethanol. High Test Molasses (HTM) was chosen as the fermentation media because it is a substratum that is poor in nutrients, and because it permits one to distinguish the action of lipids from other nutritional factors. The study of the optimization of the concentration of lipids by surface response analysis showed that the lipids favor the performance of the yeast principally when applied separately. Maximum concentrations of the two sources of lipids in the media stimulated the budding rate but did not constitute a protection against cell death. Considering the action of lipids on the cellular parameters studied, the supplementation of the media with 3.0 g/l of soy oil permitted the obtention of maximum responses of cellular viability, budding rate and viability of the buds after 6 successive cycles. In relation to the fermentative parameters, the use of 1.5 g/l of soy oil provided high yields and an equilibrium between the mass of ethanol produced (EM) and the alcoholic yield (Y p/s) , whereas the cellular viability after 6 cycles did not differ statistically from that observed with 3g/l of oil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the significant increase in the incidence of invasive fungal infections during the last decade, mainly in patients with cancer, AIDS and other hospitalized patients who stay for long periods in intensive care units, there is an urgent need to screen for new antifungal agents possessing some advantages over known ones. This article reports a search in the field for a microorganism producing antibacterial and antifungal substances. Strains from soil samples collected in the region of Araraquara, Brazil, were isolated and analyzed for their antimicrobial potential against standard microorganisms (fungi Candida albicans and Aspergillus oryzae and bacteria Staphylococcus aureus and Escherichia coli). Out of the 64 strains isolated, 34 produced detectable antimicrobial activity. The streptomycete strain Ar4014 was chosen for further study, owing to its good antimicrobial activity against Candida albicans. Two of the fermentation media tested, 608-K and 602-B, were found to be best for the production and extraction of the antibiotic from Ar4014. After chromatographic separation of the crude extract on a silica column, the active fractions obtained showed UV-VIS absorption peaks characteristic of normal pentaenic antibiotics. The antibiotic was provisionally designated Ara 4014-75.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ethanol from lignocellulosic feedstocks is not currently competitive with corn-based ethanol in terms of yields and commercial feasibility. Through optimization of the pretreatment and fermentation steps this could change. The overall goal of this study was to evaluate, characterize, and optimize ethanol production from lignocellulosic feedstocks by the yeasts Saccharomyces cerevisiae (strain Ethanol Red, ER) and Pichia stipitis CBS 6054. Through a series of fermentations and growth studies, P. stipitis CBS 6054 and S. cerevisiae (ER) were evaluated on their ability to produce ethanol from both single substrate (xylose and glucose) and mixed substrate (five sugars present in hemicellulose) fermentations. The yeasts were also evaluated on their ability to produce ethanol from dilute acid pretreated hydrolysate and enzymatic hydrolysate. Hardwood (aspen), softwood (balsam), and herbaceous (switchgrass) hydrolysates were also tested to determine the effect of the source of the feedstock. P. stipitis produced ethanol from 66-98% of the theoretical yield throughout the fermentation studies completed over the course of this work. S. cerevisiae (ER) was determined to not be ideal for dilute acid pretreated lignocellulose because it was not able to utilize all the sugars found in hemicellulose. S. cerevisiae (ER) was instead used to optimize enzymatic pretreated lignocellulose that contained only glucose monomers. It was able to produce ethanol from enzymatically pretreated hydrolysate but the sugar level was so low (>3 g/L) that it would not be commercially feasible. Two lignocellulosic degradation products, furfural and acetic acid, were evaluated for whether or not they had an inhibitory effect on biomass production, substrate utilization, and ethanol production by P. stipitis and S. cerevisiae (ER). It was determined that inhibition is directly related to the concentration of the inhibitor and the organism. The final phase for this thesis focused on adapting P. stipitis CBS 6054 to toxic compounds present in dilute acid pretreated hydrolysate through directed evolution. Cultures were transferred to increasing concentrations of dilute acid pretreated hydrolysate in the fermentation media. The adapted strains’ fermentation capabilities were tested against the unadapted parent strain at each hydrolysate concentration. The fermentation capabilities of the adapted strain were significantly improved over the unadapted parentstrain. On media containing 60% hydrolysate the adapted strain yielded 0.30 g_ethanol/g_sugar ± 0.033 (g/g) and the unadapted parent strain yielded 0.11 g/g ±0.028. The culture has been successfully adapted to growth on media containing 65%, 70%, 75%, and 80% hydrolysate but with below optimal ethanol yields (0.14-0.19 g/g). Cell recycle could be a viable option for improving ethanol yields in these cases. A study was conducted to determine the optimal media for production of ethanol from xylose and mixed substrate fermentations by P. stipitis. Growth, substrate utilization, and ethanol production were the three factors used to evaluate the media. The three media tested were Yeast Peptone (YP), Yeast Nitrogen Base (YNB), and Corn Steep Liquor (CSL). The ethanol yields (g/g) for each medium are as follows: YP - 0.40-0.42, YNB -0.28-.030, and CSL - 0.44-.051. The results show that media containing CSL result in slightly higher ethanol yields then other fermentation media. P. stipitis was successfully adapted to dilute acid pretreated aspen hydrolysate in increasing concentrations in order to produce higher ethanol yields compared to the unadapted parent strain. S. cerevisiae (ER) produced ethanol from enzymatic pretreated cellulose containing low concentrations of glucose (1-3g/L). These results show that fermentations of lignocellulosic feedstocks can be optimized based on the substrate and organism for increased ethanol yields.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four Saccharomyces cerevisiae Brazilian industrial ethanol production strains were grown, under shaken and static conditions, in media containing 22% (w/v) sucrose supplemented with nitrogen sources varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Sucrose fermentations by Brazilian industrial ethanol production yeasts strains were strongly affected by both the structural complexity of the nitrogen source and the availability of oxygen. Data suggest that yeast strains vary in their response to the nitrogen source`s complex structure and to oxygen availability. In addition, the amount of trehalose produced could be correlated with the fermentation performance of the different yeasts, suggesting that efficient fuel ethanol production depends on finding conditions which are appropriate for a particular strain, considering demand and dependence on available nitrogen sources in the fermentation medium.