549 resultados para Femur.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently the National Patient Safety Agency in the United Kingdom published a report entitled "Mitigating surgical risk in patients undergoing hip arthroplasty for fractures of the proximal femur". A total of 26 deaths had been reported to them when cement was used at hemiarthroplasty between October 2003 and October 2008. This paper considers the evidence for using cement fixation of a hemiarthroplasty in the treatment of hip fractures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was warped to the size and shape of a single 2D radiographic image of a subject. Mean absolute depth errors are comparable with previous approaches utilising multiple 2D input projections. Introduction Several approaches have been adopted to derive volumetric density (g cm-3) from a conventional 2D representation of areal bone mineral density (BMD, g cm-2). Such approaches have generally aimed at deriving an average depth across the areal projection rather than creating a formal 3D shape of the bone. Methods Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was subsequently warped to suit the size and shape of a single 2D radiographic image of a subject. CT scans of excised human femora, 18 and 24 scanned at pixel resolutions of 1.08 mm and 0.674 mm, respectively, were equally split into training (created 3D shape template) and test cohorts. Results The mean absolute depth errors of 3.4 mm and 1.73 mm, respectively, for the two CT pixel sizes are comparable with previous approaches based upon multiple 2D input projections. Conclusions This technique has the potential to derive volumetric density from BMD and to facilitate 3D finite element analysis for prediction of the mechanical integrity of the proximal femur. It may further be applied to other anatomical bone sites such as the distal radius and lumbar spine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The validation of Computed Tomography (CT) based 3D models takes an integral part in studies involving 3D models of bones. This is of particular importance when such models are used for Finite Element studies. The validation of 3D models typically involves the generation of a reference model representing the bones outer surface. Several different devices have been utilised for digitising a bone’s outer surface such as mechanical 3D digitising arms, mechanical 3D contact scanners, electro-magnetic tracking devices and 3D laser scanners. However, none of these devices is capable of digitising a bone’s internal surfaces, such as the medullary canal of a long bone. Therefore, this study investigated the use of a 3D contact scanner, in conjunction with a microCT scanner, for generating a reference standard for validating the internal and external surfaces of a CT based 3D model of an ovine femur. One fresh ovine limb was scanned using a clinical CT scanner (Phillips, Brilliance 64) with a pixel size of 0.4 mm2 and slice spacing of 0.5 mm. Then the limb was dissected to obtain the soft tissue free bone while care was taken to protect the bone’s surface. A desktop mechanical 3D contact scanner (Roland DG Corporation, MDX 20, Japan) was used to digitise the surface of the denuded bone. The scanner was used with the resolution of 0.3 × 0.3 × 0.025 mm. The digitised surfaces were reconstructed into a 3D model using reverse engineering techniques in Rapidform (Inus Technology, Korea). After digitisation, the distal and proximal parts of the bone were removed such that the shaft could be scanned with a microCT (µCT40, Scanco Medical, Switzerland) scanner. The shaft, with the bone marrow removed, was immersed in water and scanned with a voxel size of 0.03 mm3. The bone contours were extracted from the image data utilising the Canny edge filter in Matlab (The Mathswork).. The extracted bone contours were reconstructed into 3D models using Amira 5.1 (Visage Imaging, Germany). The 3D models of the bone’s outer surface reconstructed from CT and microCT data were compared against the 3D model generated using the contact scanner. The 3D model of the inner canal reconstructed from the microCT data was compared against the 3D models reconstructed from the clinical CT scanner data. The disparity between the surface geometries of two models was calculated in Rapidform and recorded as average distance with standard deviation. The comparison of the 3D model of the whole bone generated from the clinical CT data with the reference model generated a mean error of 0.19±0.16 mm while the shaft was more accurate(0.08±0.06 mm) than the proximal (0.26±0.18 mm) and distal (0.22±0.16 mm) parts. The comparison between the outer 3D model generated from the microCT data and the contact scanner model generated a mean error of 0.10±0.03 mm indicating that the microCT generated models are sufficiently accurate for validation of 3D models generated from other methods. The comparison of the inner models generated from microCT data with that of clinical CT data generated an error of 0.09±0.07 mm Utilising a mechanical contact scanner in conjunction with a microCT scanner enabled to validate the outer surface of a CT based 3D model of an ovine femur as well as the surface of the model’s medullary canal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (N mm− 1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived from a single 2D radiographic image. This ex-vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High energy bone fractures resulting from impact trauma are often accompanied by subcutaneous soft tissue injuries, even if the skin remains intact. There is evidence that such closed soft tissue injuries affect the healing of bone fractures, and vice versa. Despite this knowledge, most impact trauma studies in animals have focussed on bone fractures or soft tissue trauma in isolation. However, given the simultaneous impact on both tissues a better understanding of the interaction between these two injuries is necessary to optimise clinical treatment. The aim of this study was therefore to develop a new experimental model and characterise, for the first time, the healing of a complex fracture with concurrent closed soft tissue trauma in sheep. A pendulum impact device was designed to deliver a defined and standardised impact to the distal thigh of sheep, causing a reproducible contusion injury to the subcutaneous soft tissues. In a subsequent procedure, a reproducible femoral butterfly fracture (AO C3-type) was created at the sheep’s femur, which was initially stabilised for 5 days by an external fixator construct to allow for soft tissue swelling to recede, and ultimately in a bridging construct using locking plates. The combined injuries were applied to twelve sheep and the healing observed for four or eight weeks (six animals per group) until sacrifice. The pendulum impact led to a moderate to severe circumferential soft tissue injury with significant bruising, haematomas and partial muscle disruptions. Posttraumatic measurements showed elevated intra-compartmental pressure and circulatory tissue breakdown markers, with recovery to normal, pre-injury values within four days. Clinically, no neurovascular deficiencies were observed. Bi-weekly radiological analysis of the healing fractures showed progressive callus healing over time, with the average number of callus bridges increasing from 0.4 at two weeks to 4.2 at eight weeks. Biomechanical testing after sacrifice showed increasing torsional stiffness between four and eight weeks healing time from 10% to 100%, and increasing ultimate torsional strength from 10% to 64% (relative to the contralateral control limb). Our results demonstrate the robust healing of a complex femur fracture in the presence of a severe soft tissue contusion injury in sheep and demonstrate the establishment of a clinically relevant experimental model, for research aimed at improving the treatment of bone fractures accompanied by closed soft tissue injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Large segmental defects in bone do not heal well and present clinical challenges. This study investigated modulation of the mechanical environment as a means of improving bone healing in the presence of bone morphogenetic protein (BMP)-2. Although the influence of mechanical forces on the healing of fractures is well established, no previous studies, to our knowledge, have described their influence on the healing of large segmental defects. We hypothesized that bone-healing would be improved by initial, low-stiffness fixation of the defect, followed by high-stiffness fixation during the healing process. We call this reverse dynamization. Methods A rat model of a critical-sized femoral defect was used. External fixators were constructed to provide different degrees of stiffness and, importantly, the ability to change stiffness during the healing process in vivo. Healing of the critical-sized defects was initiated by the implantation of 11 mg of recombinant human BMP (rhBMP)-2 on a collagen sponge. Groups of rats receiving BMP-2 were allowed to heal with low, medium, and high-stiffness fixators, as well as under conditions of reverse dynamization, in which the stiffness was changed from low to high at two weeks. Healing was assessed at eight weeks with use of radiographs, histological analysis, microcomputed tomography, dual x-ray absorptiometry, and mechanical testing. Results Under constant stiffness, the low-stiffness fixator produced the best healing after eight weeks. However, reverse dynamization provided considerable improvement, resulting in a marked acceleration of the healing process by all of the criteria of this study. The histological data suggest that this was the result of intramembranous, rather than endochondral, ossification. Conclusions Reverse dynamization accelerated healing in the presence of BMP-2 in the rat femur and is worthy of further investigation as a means of improving the healing of large segmental bone defects. Clinical Relevance These data provide the basis of a novel, simple, and inexpensive way to improve the healing of critical-sized defects in long bones. Reverse dynamization may also be applicable to other circumstances in which bonehealing is problematic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very little is known about the infl uence of the mechanical environment on the healing of large segmental defects. This partly reflects the lack of standardised, well characterised technologies to enable such studies. Here we report the design, construction and characterisation of a novel external fixator for use in conjunction with rat femoral defects. This device not only imposes a predetermined axial stiffness on the lesion, but also enables the stiffness to be changed during the healing process. The main frame of the fi xator consists of polyethylethylketone with titanium alloy mounting pins. The stiffness of the fi xator is determined by interchangeable connection elements of different thicknesses. Fixators were shown to stabilise 5 mm femoral defects in rats in vivo for at least 8 weeks during unrestricted cage activity. No distortion or infections, including pin infections, were noted. The healing process was simulated in vitro by inserting into a 5 mm femoral defect, materials whose Young’s moduli approximated those of the different tissues present in regenerating bone. These studies confirmed that, although the external fixator is the major determinant of axial stiffness during the early phase of healing, the regenerate within the lesion subsequently dominates this property. There is much clinical interest in altering the mechanics of the defect to enhance bone healing. Our data suggest that, if alteration of the mechanical environment is to be used to modulate the healing of large segmental defects, this needs to be performed before the tissue properties become dominant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim This prospective cohort study investigated whether the use of preoperative anticoagulants is an independent risk factor for the outcomes of surgical treatment of patients with a neck of femur fracture. Methods Data was obtained from a prospectively collected database. All patients admitted for a neck of femur fracture between Nov 2010 and Oct 2011 were included. This resulted in three hundred twenty-eight patients with 330 neck of femur fractures. Four groups were defined; patients preoperatively (i) on aspirin (n = 105); (ii) on clopidogrel (n = 28); (iii) on warfarin (n = 30), and; (iv) without any anticoagulation history (n = 167, the control group). The non-warfarin group included the aspirin group, clopidogrel group and the control group. Primary outcome was the in-hospital mortality. Secondary outcomes were the postoperative complications, return to theatre and length of stay. Results Thirteen in-hospital deaths were identified, 4 deaths in the aspirin group, 1 death in the clopidogrel group, 2 deaths in the warfarin group and 6 deaths in the control group. No significant difference in the mortality rates was found between the different groups. Also in the secondary outcomes, no significant difference was found between the four groups. A trend to a higher wound complication rate for the warfarin group was detected. Conclusion The use of clopidrogel or aspirin pre operatively is not an influence on short term patient outcome for patients with a neck of femur fracture. Surgical procedures should not be delayed to reverse their influence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilising computed tomography scans to allow a virtual analysis of three-dimensional reconstructions of the femur, this project confirms that the traditional 1952 Trotter and Gleser stature estimation equations are inapplicable for a contemporary Queensland population. Therefore, this study introduces modern stature estimation equations for femoral length and fragmentary femoral remains using Bayesian statistics for application in forensic anthropological casework. In addition, it was found that caution needs to be applied when comparing estimated stature to reported stature on the missing persons database due to inaccuracy in Queensland drivers' licences.