798 resultados para Femtosecond laser writing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced waveguide lasers, operating both in continuous wave and pulsed regimes, have been realized in an active phosphate glass by direct writing with femtosecond laser pulses. Stable single mode operation was obtained; the laser provided more than 50 m W in single longitudinal and transverse mode operation with 21% slope efficiency. Furthermore, by combining a high gain waveguide and an innovated fiber-pigtailed saturable absorber based on carbon nanotubes, a mode-locked ring laser providing transform limited 1.6 ps pulses was demonstrated. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femtosecond-pulsed laser writing of waveguides, a few mm long, is demonstrated; waveguides were written orthogonally to the writing beam inside the bulk of ErIII-doped oxyfluoride glasses at a depth of 160 mum. The writing beam was 795 nm wavelength, 54 fs pulse duration and 11 MHz repetition rate. Tracks were written at pulse energies of 13.1 nJ to 26.1 nJ and sample translational velocity of 10 mmmiddot.s-1 to 28 mmmiddots-1. The influence of translational velocity and pulse energy on the cross-sectional shape and integrity of the written tracks is reported. Tracks tend to be narrower as the pulse energy is lowered or translational velocity decreased. Above 22.9 nJ, pulse energy, tracks tend to crack. The estimated refractive index profile of one track has a maximum increase of refractive index of 0.003 at the centre. These glasses normally form nano-glass-ceramics on heat treatment just above the glass transformation temperature (Tg). Here, a post-fs-writing heat-treatment just above Tg causes nano-ceramming of the glass sample and removes a light-guiding peripheral region of the fs-written tracks suggesting that this region may have been fs-modified by stress alone. Waveguiding at 651 nm and 973 nm wavelengths, and upconversion, are demonstrated in optimally written tracks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monoclinic RbPb2Cl5:Dy single crystal was tested for femtosecond laser writing at wavelength of 800nm. Dependence of permanent refractive index change upon input pulse energy was investigated. Non-linear coefficients of multiphoton absorption and self-focusing were measured. Kerr non-linear coefficient was found to be as high as 4.0*10-6 cm2/GW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femtosecond-pulsed laser writing of waveguides, a few mm long, is demonstrated; waveguides were written orthogonally to the writing beam inside the bulk of ErIII-doped oxyfluoride glasses at a depth of 160 mum. The writing beam was 795 nm wavelength, 54 fs pulse duration and 11 MHz repetition rate. Tracks were written at pulse energies of 13.1 nJ to 26.1 nJ and sample translational velocity of 10 mmmiddot.s-1 to 28 mmmiddots-1. The influence of translational velocity and pulse energy on the cross-sectional shape and integrity of the written tracks is reported. Tracks tend to be narrower as the pulse energy is lowered or translational velocity decreased. Above 22.9 nJ, pulse energy, tracks tend to crack. The estimated refractive index profile of one track has a maximum increase of refractive index of 0.003 at the centre. These glasses normally form nano-glass-ceramics on heat treatment just above the glass transformation temperature (Tg). Here, a post-fs-writing heat-treatment just above Tg causes nano-ceramming of the glass sample and removes a light-guiding peripheral region of the fs-written tracks suggesting that this region may have been fs-modified by stress alone. Waveguiding at 651 nm and 973 nm wavelengths, and upconversion, are demonstrated in optimally written tracks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the fabrication of a novel surface-enhanced Raman scattering (SERS) substrate with a controllable enhancement factor (EF) using femtosecond laser direct writing on Ag+-doped phosphate glass followed by chemical plating at similar to 40 degrees C. Silver seeds were first photoreduced using a femtosecond laser in a laser-irradiated area and then transformed into silver nanoparticles of suitable size for SERS application in the subsequent chemical plating. Rhodamine 6G was used as a probing molecule to investigate the enhancement effect of a Raman signal on the substrate. Nearly homogenous enhancement of the Raman signal over the Substrate was achieved, and the EF of the substrate was controlled to some extent by adjusting fabrication parameters. Moreover, the ability of forming a SERS platform in an embedded microfluidic chamber would be of great use for establishing a compact lab-on-a-chip device based on Raman analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Writing computer-generated holograms has been achieved by using near infrared femtosecond laser selective ablation of metal film deposited on glass substrate. The diffraction features with data reconstruction of fabricated computer-generated holograms were evaluated. Both transmission and reflection holograms can be fabricated in a single process. The process required no mask, no pre- or post-treatment of the substrate. (C) 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for inscribing fiber bragg gratings (FBG) using direct, point-by-point writing by an infrared femtosecond laser was described. The method requires neither phase-masks nor photosensitized fibers and hence offers remarkable technology flexibility. It requires a very short inscription time of less than 60 s per grating. Gratings of first to third order were produced in non-photosensitized, standard telecommunication fiber (SMF) and dispersion shifted fiber (DSF). The gratings produced in this method showed low insertion loss, narrow linewidth and strong, fundamental or high-order resonance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the coherent linking of periodic nano-ripples formed on the surface of ZnO crystals induced by femtosecond laser pulses. By adjusting the distance between two laser scanning zones, the periodic nano-ripples induced by two separated laser writing processes can be coherently linked and the ZnO nanograting with much longer grooves is therefore produced. The length limitation of this kind of nanograting previously set by the laser focus size is thus overcome. The micro-Raman mapping technique is used to evaluate the quality of coherent linking, and the underlying physics is discussed. The demonstrated scheme is promising for producing large-size self-organized nanogratings induced by femtosecond laser pulses.