865 resultados para Feedstock Microstructure


Relevância:

60.00% 60.00%

Publicador:

Resumo:

AlSi7Mg0.35 alloy was cast into permanent moulds using different pouring temperatures (725 to 625degreesC). As the pouring temperature decreased, the as-cast microstructure changed from a coarse dendritic structure, through fine equiaxed grains to fine rosette-like grains. The as-cast materials were then partially remelted and isothermally held at 580degreesC prior to semisolid casting into a stepped die. The feedstock material cast from a high temperature filled only half the die, with severe segregation and other defects. The low-temperature-poured material completely filled the die with negligible porosity. The quality of semisolid castings is significantly affected by the microstructure of the semisolid feedstock material that arises from a combination of as-cast and subsequent thermal treatment conditions. The paper describes (a) the influence of pouring temperature on the microstructure of feedstock; (b) microstructure evolution through remelting and (c) the quality of semisolid castings produced with this material. For A17Si0.35Mg alloy, low temperature pouring in the range of 625-650degreesC followed by suitable isothermal holding treatment can result in good quality semisolid casting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, the electronic industry demands small and complex parts as a consequence of the miniaturization of electronic devices. Powder injection moulding (PIM) is an emerging technique for the manufacturing of magnetic ceramics. In this paper, we analyze the sintering process, between 900 °C and 1300 °C, of Ni–Zn ferrites prepared by PIM. In particular, the densification behaviour, microstructure and mechanical properties of samples with toroidal and bar geometry were analyzed at different temperatures. Additionally, the magnetic behaviour (complex permeability and magnetic losses factor) of these compacts was compared with that of samples prepared by conventional powder compaction. Finally, the mechanical behaviour (elastic modulus, flexure strength and fracture toughness) was analyzed as a function of the powder loading of feedstock. The final microstructure of prepared samples was correlated with the macroscopic behaviour. A good agreement was established between the densities and population of defects found in the materials depending on the sintering conditions. In general, the final mechanical and magnetic properties of PIM samples were enhanced relative those obtained by uniaxial compaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the most recent years, Additive Manufacturing (AM) has drawn the attention of both academic research and industry, as it might deeply change and improve several industrial sectors. From the material point of view, AM results in a peculiar microstructure that strictly depends on the conditions of the additive process and directly affects mechanical properties. The present PhD research project aimed at investigating the process-microstructure-properties relationship of additively manufactured metal components. Two technologies belonging to the AM family were considered: Laser-based Powder Bed Fusion (LPBF) and Wire-and-Arc Additive Manufacturing (WAAM). The experimental activity was carried out on different metals of industrial interest: a CoCrMo biomedical alloy and an AlSi7Mg0.6 alloy processed by LPBF, an AlMg4.5Mn alloy and an AISI 304L austenitic stainless steel processed by WAAM. In case of LPBF, great attention was paid to the influence that feedstock material and process parameters exert on hardness, morphological and microstructural features of the produced samples. The analyses, targeted at minimizing microstructural defects, lead to process optimization. For heat-treatable LPBF alloys, innovative post-process heat treatments, tailored on the peculiar hierarchical microstructure induced by LPBF, were developed and deeply investigated. Main mechanical properties of as-built and heat-treated alloys were assessed and they were well-correlated to the specific LPBF microstructure. Results showed that, if properly optimized, samples exhibit a good trade-off between strength and ductility yet in the as-built condition. However, tailored heat treatments succeeded in improving the overall performance of the LPBF alloys. Characterization of WAAM alloys, instead, evidenced the microstructural and mechanical anisotropy typical of AM metals. Experiments revealed also an outstanding anisotropy in the elastic modulus of the austenitic stainless-steel that, along with other mechanical properties, was explained on the basis of microstructural analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxide dispersion strengthened reduced-activation ferritic-martensitic steels are promising candidates for applications in future fusion power plants. Samples of a reduced activation ferritic-martensitic 9 wt.%Cr-oxide dispersion strengthened Eurofer steel were cold rolled to 80% reduction in thickness and annealed in vacuum for 1 h from 200 to 1350 degrees C to evaluate its thermal stability. Vickers microhardness testing and electron backscatter diffraction (EBSD) were used to characterize the microstructure. The microstructural changes were also followed by magnetic measurements, in particular the corresponding variation of the coercive field (H(c)), as a function of the annealing treatment. Results show that magnetic measurements were sensitive to detect the changes, in particular the martensitic transformation, in samples annealed above 850 degrees C (austenitic regime). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Refractory castables are composed of fractions of fine to fairly coarse particles. The fine fraction is constituted primarily of raw materials and calcium aluminate cement, which becomes hydrated, forming chemical bonds that stiffen the concrete during the curing process. The present study focused on an evaluation of several characteristics of two refractory castables with similar chemical compositions but containing aggregates of different sizes. The features evaluated were the maximum load, the fracture energy, and the ""relative crack-propagation work"" of the two castables heat-treated at 110, 650, 1100 and 1550 degrees C. The results enabled us to draw the following conclusions: the heat treatment temperature exerts a significant influence on the matrix/aggregate interaction, different microstructures form in the castables with temperature, and a relationship was noted between the maximum load and the fracture energy. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work discusses the resultant microstructure of laser surface treated galvanised steel and the mechanical properties of adhesively bonded surfaces therein. The surface microstructure obtained at laser intensities between 170 and 1700 MW cm 22 exhibit zinc melting and cavity formation. The wavy surface morphology of the treated surface exhibits an average roughness Ra between 1.0 and 1.5 mu m, and a mean roughness depth R(z) of 8.6 mu m. Atomic force microscopic analyses revealed that the R(z) inside the laser shot cavities increased from 68 to 243 nm when the incident laser intensity was increased from 170 to 1700 MW cm(-2). X-ray fluorescence analyses were used to measure Zn coating thicknesses as a function of process parameters. Both X-ray fluorescence and X-ray diffraction analyses demonstrated that the protective coating remains at the material surface, and the steel structure beneath was not affected by the laser treatment. Tensile tests under peel strength conditions demonstrated that the laser treated adhesively joined samples had resistance strength up to 88 MPa, compared to a maximum of only 23 MPa for the untreated surfaces. The maximum deformation for rupture was also greatly increased from 0.07%, for the original surface, to 0.90% for the laser treated surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A typical residual clayey soil originating from basalt in southern Brazil has been analyzed in order to assess the influence of wetting-induced deformation and microstructural features on the collapse behavior. Single and double oedometer tests were undertaken on a soil profile to 9 m depth. The results indicated collapsible behaviour at all profile depths. The influence of pre-consolidation stress and pedogenetic factors in the variability of the physical characteristics of the soil and in the magnitude of the collapse was noted. The collapse coefficient has been shown to be related to the both the microaggregate plasma and the varying nature of the pores and their interconnectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the aim of investigating a laser-welded dissimilar joint of TWIP and TRIP steel sheets, the microstructure was characterized by means of OM, SEM, and EBSD to differentiate the fusion zone, heat-affected zone, and the base material. OIM was used to differentiate between ferritic, bainitic, and martensitic structures. Compositions were measured by means of optical emission spectrometry and EDX to evaluate the effect of manganese segregation. Microhardness measurements and tensile tests were performed to evaluate the mechanical properties of the joint. Residual stresses and XRD phase quantification were used to characterize the weld. Grain coarsening and martensitic areas were found in the fusion zone, and they had significant effects on the mechanical properties of the weld. The heat-affected zone of the TRIP steel and the corresponding base material showed considerable differences in the microstructure and properties. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AISI H13 tool steel discs were pulsed plasma minded during different times at a constant temperature of 400 degrees C Wear tests were performed in order to study the acting wear mechanisms The samples were characterized by X-ray diffraction, scanning electron microscopy and hardness measurements The results showed that longer nitriding times reduce the wear volumes. The friction coefficient was 0.20 +/- 0 05 for all tested conditions and depends strongly on the presence of debris After wear tests, the wear tracks were characterized by optical and scanning electron microscopy and the wear mechanisms were observed to change from low cycle fatigue or plastic shakedown to long cycle fatigue These mechanisms were correlated to the microstructure and hardness of the nitrided layer (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work presents measurements of the Magnetic Barkhausen Noise (MBN) in commercial AISI/SAE 1005 steel samples for different grain sizes. The correlation between the shape of the MBN jump and the grain size is established. The results show the existence of types of MBN jumps. Also, the outcome shows that one of these types of MBN jumps become ""squarer"" with the decrease of grain size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure and texture of melt-spun UNS S31803 (DIN W. Nr. 1. 4462) duplex stainless steel were analyzed after casting and solution treatment. The cast ribbons contained austenite (gamma) and ferrite (alpha or delta) with roughly equal compositions. The alpha and gamma had < 100 > and < 110 > partial fiber textures, respectively. After solution treatment, the texture was maintained, the amount of gamma phase increased, and the alloying elements were partitioned as expected, according to whether they were ferrite or austenite stabilizers. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum sheets are currently produced by the direct-chill process (DC). The need for low-cost aluminum sheets is a challenge for the development of new materials produced by the twin roll caster (TRC) process. It is expected that sheets produced from these different casting procedures will differ in their microstructure. These differences in microstructure and in the crystallographic texture have great impact on sheet mechanical properties and formability. The present study investigated microstructure and evaluated texture of two strips of Al-Mn-Fe-Si (3003) aluminum alloy produced by TRC and by hot-rolling processes. It was possible to notice that the microstructure, morphology, and grain size of the TRC sample were more homogenous than those found in hot-rolled samples. Both strips, obtained by the two processes, showed strong texture gradient across the thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxide dispersion strengthened (ODS) ferritic/martensitic (FM) steels are promising candidates for structural applications in future fusion power reactors. In order to evaluate the thermal stability of 80% cold-rolled ODS-EUROFER, samples were annealed for 1 h at temperatures up to about 0.9 T(m), where T(m) is the absolute melting point. The characterization of the annealed samples was performed using transmission electron microscopy and electron backscatter diffraction. Results show that static recovery is the main softening mechanism of this steel when annealed below 800 degrees C. The volume fraction of recrystallized grains is quite small (below 0.10). Above 900 degrees C, martensitic transformation takes place causing pronounced hardening. Large M(23)C(6) particles are found at the grain boundaries after tempering at 750 degrees C for 2 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluated chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) blends, with 20%, 25%, 30%, 35% and 40%(w/w) FHCSO content. Interesterification produced reduction of trisaturated and increase in monounsaturated and diunsaturated triacylglycerols contents, which caused important changes in temperatures and enthalpies associated with the crystallization and melting thermograms. It was verified reduction in medium crystal diameter in all blends, in addition crystal morphology modification. Crystallization kinetics revealed that crystal formation induction period and maximum solid fat content were altered according to FHCSO content in original blends and as a result of random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that interesterification decreased crystallization rates and altered crystalline morphology. However, X-ray diffraction analyses showed randomization did not change the original crystalline polymorphism. The original and interesterified blends had significant predominance of beta` polymorph, which is interesting for several food applications. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of soybean oil (SO) and fully hydrogenated soybean oil (FHSBO), with 10, 20, 30, 40, and 50% (w/w) FHSBO content were interesterified under the following conditions: 20 min reaction time, 0.4% sodium methoxide catalyst, and 500 rpm stirring speed, at 100 A degrees C. The original and interesterified blends were examined for triacylglycerol composition, thermal behavior, microstructure, crystallization kinetics, and polymorphism. Interesterification produced substantial rearrangement of the triacylglycerol species in all the blends, reduction of trisaturated triacylglycerol content and increase in monounsaturated-disaturated and diunsaturated-monosaturated triacylglycerols. Evaluation of thermal behavior parameters showed linear relations with FHSBO content in the original blends. Blend melting and crystallization thermograms were significantly modified by the randomization. Interesterification caused significant reductions in maximum crystal diameter in all blends, in addition to modifying crystal morphology. Characterization of crystallization kinetics revealed that crystal formation induction period (tau (SFC)) and maximum solid fat content (SFC(max)) were altered according to FHSBO content in the original blends and as a result of the random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that-as compared with the original blends-interesterification decreased crystallization velocities and modified crystallization processes, altering crystalline morphology and nucleation mechanism. X-ray diffraction analyses revealed that interesterification altered crystalline polymorphism. The interesterified blends showed a predominance of the beta` polymorph, which is of more interest for food applications.