995 resultados para Feature types


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a general purpose flexible technique which uses physical modelling techniques for determining the features of a 3D object that are visible from any predefined view. Physical modelling techniques are used to determine which of many different types of features are visible from a complete set of viewpoints. The power of this technique lies in its ability to detect and parameterise object features, regardless of object complexity. Raytracing is used to simulate the physical process by which object features are visible so that surface properties (eg specularity, transparency) as well as object boundaries can be used in the recognition process. Using this technique occluding and non-occluding edge based features are extracted using image processing techniques and then parameterised. Features caused by specularity are also extracted and qualitative descriptions for these are defined.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automated crowd counting has become an active field of computer vision research in recent years. Existing approaches are scene-specific, as they are designed to operate in the single camera viewpoint that was used to train the system. Real world camera networks often span multiple viewpoints within a facility, including many regions of overlap. This paper proposes a novel scene invariant crowd counting algorithm that is designed to operate across multiple cameras. The approach uses camera calibration to normalise features between viewpoints and to compensate for regions of overlap. This compensation is performed by constructing an 'overlap map' which provides a measure of how much an object at one location is visible within other viewpoints. An investigation into the suitability of various feature types and regression models for scene invariant crowd counting is also conducted. The features investigated include object size, shape, edges and keypoints. The regression models evaluated include neural networks, K-nearest neighbours, linear and Gaussian process regresion. Our experiments demonstrate that accurate crowd counting was achieved across seven benchmark datasets, with optimal performance observed when all features were used and when Gaussian process regression was used. The combination of scene invariance and multi camera crowd counting is evaluated by training the system on footage obtained from the QUT camera network and testing it on three cameras from the PETS 2009 database. Highly accurate crowd counting was observed with a mean relative error of less than 10%. Our approach enables a pre-trained system to be deployed on a new environment without any additional training, bringing the field one step closer toward a 'plug and play' system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper evaluates the suitability of sequence classification techniques for analyzing deviant business process executions based on event logs. Deviant process executions are those that deviate in a negative or positive way with respect to normative or desirable outcomes, such as non-compliant executions or executions that undershoot or exceed performance targets. We evaluate a range of feature types and classification methods in terms of their ability to accurately discriminate between normal and deviant executions both when deviances are infrequent (unbalanced) and when deviances are as frequent as normal executions (balanced). We also analyze the ability of the discovered rules to explain potential causes and contributing factors of observed deviances. The evaluation results show that feature types extracted using pattern mining techniques only slightly outperform those based on individual activity frequency. The results also suggest that more complex feature types ought to be explored to achieve higher levels of accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper introduces a method by which intuitive feature entities can be created from ILP (InterLevel Product) coefficients. The ILP transform is a pyramid of decimated complex-valued coefficients at multiple scales, derived from dual-tree complex wavelets, whose phases indicate the presence of different feature types (edges and ridges). We use an Expectation-Maximization algorithm to cluster large ILP coefficients that are spatially adjacent and similar in phase. We then demonstrate the relationship that these clusters possess with respect to observable image content, and conclude with a look at potential applications of these clusters, such as rotation- and scale-invariant object recognition. © 2005 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present results of a study into the performance of a variety of different image transform-based feature types for speaker-independent visual speech recognition of isolated digits. This includes the first reported use of features extracted using a discrete curvelet transform. The study will show a comparison of some methods for selecting features of each feature type and show the relative benefits of both static and dynamic visual features. The performance of the features will be tested on both clean video data and also video data corrupted in a variety of ways to assess each feature type's robustness to potential real-world conditions. One of the test conditions involves a novel form of video corruption we call jitter which simulates camera and/or head movement during recording.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an approach which enables new parameters to be added to a CAD model for optimization purposes. It aims to remove a common roadblock to CAD based optimization, where the parameterization of the model does not offer the shape sufficient flexibility for a truly optimized shape to be created. A technique has been developed which uses adjoint based sensitivity maps to predict
the sensitivity of performance to the addition to a model of four different feature types, allowing the feature providing the greatest benefit to be selected. The optimum position to add the feature is also discussed. It is anticipated that the approach could be used to iteratively add features to a model, providing greater flexibility to the shape of the model, and allowing the newly-added parameters to be used as design variables in a subsequent shape optimization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Much consideration is rightly given to the design of metadata models to describe data. At the other end of the data-delivery spectrum much thought has also been given to the design of geospatial delivery interfaces such as the Open Geospatial Consortium standards, Web Coverage Service (WCS), Web Map Server and Web Feature Service (WFS). Our recent experience with the Climate Science Modelling Language shows that an implementation gap exists where many challenges remain unsolved. To bridge this gap requires transposing information and data from one world view of geospatial climate data to another. Some of the issues include: the loss of information in mapping to a common information model, the need to create ‘views’ onto file-based storage, and the need to map onto an appropriate delivery interface (as with the choice between WFS and WCS for feature types with coverage-valued properties). Here we summarise the approaches we have taken in facing up to these problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The electroencephalogram (EEG) may be described by a large number of different feature types and automated feature selection methods are needed in order to reliably identify features which correlate with continuous independent variables. New method: A method is presented for the automated identification of features that differentiate two or more groups inneurologicaldatasets basedupona spectraldecompositionofthe feature set. Furthermore, the method is able to identify features that relate to continuous independent variables. Results: The proposed method is first evaluated on synthetic EEG datasets and observed to reliably identify the correct features. The method is then applied to EEG recorded during a music listening task and is observed to automatically identify neural correlates of music tempo changes similar to neural correlates identified in a previous study. Finally,the method is applied to identify neural correlates of music-induced affective states. The identified neural correlates reside primarily over the frontal cortex and are consistent with widely reported neural correlates of emotions. Comparison with existing methods: The proposed method is compared to the state-of-the-art methods of canonical correlation analysis and common spatial patterns, in order to identify features differentiating synthetic event-related potentials of different amplitudes and is observed to exhibit greater performance as the number of unique groups in the dataset increases. Conclusions: The proposed method is able to identify neural correlates of continuous variables in EEG datasets and is shown to outperform canonical correlation analysis and common spatial patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multispectral iris recognition uses information from multiple bands of the electromagnetic spectrum to better represent certain physiological characteristics of the iris texture and enhance obtained recognition accuracy. This paper addresses the questions of single versus cross spectral performance and compares score-level fusion accuracy for different feature types, combining different wavelengths to overcome limitations in less constrained recording environments. Further it is investigated whether Doddington's “goats” (users who are particularly difficult to recognize) in one spectrum also extend to other spectra. Focusing on the question of feature stability at different wavelengths, this work uses manual ground truth segmentation, avoiding bias by segmentation impact. Experiments on the public UTIRIS multispectral iris dataset using 4 feature extraction techniques reveal a significant enhancement when combining NIR + Red for 2-channel and NIR + Red + Blue for 3-channel fusion, across different feature types. Selective feature-level fusion is investigated and shown to improve overall and especially cross-spectral performance without increasing the overall length of the iris code.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While the primary purpose of edge detection schemes is to be able to produce an edge map of a given image, the ability to distinguish between different feature types is also of importance. In this paper we examine feature classification based on local energy detection and show that local energy measures are intrinsically capable of making this classification because of the use of odd and even filters. The advantage of feature classification is that it allows for the elimination of certain feature types from the edge map, thus simplifying the task of object recognition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of image retrieval depends critically on the semantic representation and the distance function used to estimate the similarity of two images. A good representation should integrate multiple visual and textual (e.g., tag) features and offer a step closer to the true semantics of interest (e.g., concepts). As the distance function operates on the representation, they are interdependent, and thus should be addressed at the same time. We propose a probabilistic solution to learn both the representation from multiple feature types and modalities and the distance metric from data. The learning is regularised so that the learned representation and information-theoretic metric will (i) preserve the regularities of the visual/textual spaces, (ii) enhance structured sparsity, (iii) encourage small intra-concept distances, and (iv) keep inter-concept images separated. We demonstrate the capacity of our method on the NUS-WIDE data. For the well-studied 13 animal subset, our method outperforms state-of-the-art rivals. On the subset of single-concept images, we gain 79:5% improvement over the standard nearest neighbours approach on the MAP score, and 45.7% on the NDCG.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Latent fingerprints are routinely found at crime scenes due to the inadvertent contact of the criminals' finger tips with various objects. As such, they have been used as crucial evidence for identifying and convicting criminals by law enforcement agencies. However, compared to plain and rolled prints, latent fingerprints usually have poor quality of ridge impressions with small fingerprint area, and contain large overlap between the foreground area (friction ridge pattern) and structured or random noise in the background. Accordingly, latent fingerprint segmentation is a difficult problem. In this paper, we propose a latent fingerprint segmentation algorithm whose goal is to separate the fingerprint region (region of interest) from background. Our algorithm utilizes both ridge orientation and frequency features. The orientation tensor is used to obtain the symmetric patterns of fingerprint ridge orientation, and local Fourier analysis method is used to estimate the local ridge frequency of the latent fingerprint. Candidate fingerprint (foreground) regions are obtained for each feature type; an intersection of regions from orientation and frequency features localizes the true latent fingerprint regions. To verify the viability of the proposed segmentation algorithm, we evaluated the segmentation results in two aspects: a comparison with the ground truth foreground and matching performance based on segmented region. © 2012 IEEE.