843 resultados para Feature evaluation and selection
Resumo:
Feature extraction and selection are critical processes in developing facial expression recognition (FER) systems. While many algorithms have been proposed for these processes, direct comparison between texture, geometry and their fusion, as well as between multiple selection algorithms has not been found for spontaneous FER. This paper addresses this issue by proposing a unified framework for a comparative study on the widely used texture (LBP, Gabor and SIFT) and geometric (FAP) features, using Adaboost, mRMR and SVM feature selection algorithms. Our experiments on the Feedtum and NVIE databases demonstrate the benefits of fusing geometric and texture features, where SIFT+FAP shows the best performance, while mRMR outperforms Adaboost and SVM. In terms of computational time, LBP and Gabor perform better than SIFT. The optimal combination of SIFT+FAP+mRMR also exhibits a state-of-the-art performance.
Resumo:
Classification of a large document collection involves dealing with a huge feature space where each distinct word is a feature. In such an environment, classification is a costly task both in terms of running time and computing resources. Further it will not guarantee optimal results because it is likely to overfit by considering every feature for classification. In such a context, feature selection is inevitable. This work analyses the feature selection methods, explores the relations among them and attempts to find a minimal subset of features which are discriminative for document classification.
Resumo:
In this paper, we present a feature selection approach based on Gabor wavelet feature and boosting for face verification. By convolution with a group of Gabor wavelets, the original images are transformed into vectors of Gabor wavelet features. Then for individual person, a small set of significant features are selected by the boosting algorithm from a large set of Gabor wavelet features. The experiment results have shown that the approach successfully selects meaningful and explainable features for face verification. The experiments also suggest that for the common characteristics such as eyes, noses, mouths may not be as important as some unique characteristic when training set is small. When training set is large, the unique characteristics and the common characteristics are both important.
Resumo:
The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again till the statutory regulatory authority approves the project. Moreover, project analysis through above process often results sub-optimal project as financial analysis may eliminate better options, as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system, which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple-attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Supplier evaluation and selection problem has been studied extensively. Various decision making approaches have been proposed to tackle the problem. In contemporary supply chain management, the performance of potential suppliers is evaluated against multiple criteria rather than considering a single factor-cost. This paper reviews the literature of the multi-criteria decision making approaches for supplier evaluation and selection. Related articles appearing in the international journals from 2000 to 2008 are gathered and analyzed so that the following three questions can be answered: (i) Which approaches were prevalently applied? (ii) Which evaluating criteria were paid more attention to? (iii) Is there any inadequacy of the approaches? Based on the inadequacy, if any, some improvements and possible future work are recommended. This research not only provides evidence that the multi-criteria decision making approaches are better than the traditional cost-based approach, but also aids the researchers and decision makers in applying the approaches effectively.
Resumo:
Forage peanut improvement for use in grass?legume mixtures is expected to have a great impact on the sustainability of Brazilian livestock production. Eighteen cloned Arachis spp. ecotypes were evaluated under clipping in a Brazilian Cerrado region and results analysed using a mixed model methodology. The objective was to estimate genetic and phenotypic parameters and to select the best ecotypes based on selection index applied on their predicted genotypic value. The traits of total dry-matter (DM) and leaf DM yield presented moderate (0_30 < h2g < 0_50) to high (>0_50) broad-sense heritability, in contrast to the low genetic variability in nutritional quality-associated traits. Ecotypes of Arachis spp. contained average crude protein concentrations of 224 g kg _1 DM in leaves and 138 g kg _1 DM in stems, supporting the potential role of these species to overcome the low protein content in Cerrado pastures. The correlations between yield traits and traits associated with low nutritional value in leaves were consistently significant and positive. Genetic correlations among all the yield traits evaluated during the rainy or dry seasons were significant and positive. The ecotypes were ranked based on selection index. The next step is to validate long-term selection of grass?Arachis in combination with pastures under competition and adjusted grazing in the Cerrado region.
Resumo:
Q. Shen and R. Jensen, 'Approximation-based feature selection and application for algae population estimation,' Applied Intelligence, vol. 28, no. 2, pp. 167-181, 2008. Sponsorship: EPSRC RONO: EP/E058388/1
Resumo:
Facial expression is an important channel for human communication and can be applied in many real applications. One critical step for facial expression recognition (FER) is to accurately extract emotional features. Current approaches on FER in static images have not fully considered and utilized the features of facial element and muscle movements, which represent static and dynamic, as well as geometric and appearance characteristics of facial expressions. This paper proposes an approach to solve this limitation using ‘salient’ distance features, which are obtained by extracting patch-based 3D Gabor features, selecting the ‘salient’ patches, and performing patch matching operations. The experimental results demonstrate high correct recognition rate (CRR), significant performance improvements due to the consideration of facial element and muscle movements, promising results under face registration errors, and fast processing time. The comparison with the state-of-the-art performance confirms that the proposed approach achieves the highest CRR on the JAFFE database and is among the top performers on the Cohn-Kanade (CK) database.
Resumo:
This paper presents a new framework for generating triangular meshes from textured color images. The proposed framework combines a texture classification technique, called W-operator, with Imesh, a method originally conceived to generate simplicial meshes from gray scale images. An extension of W-operators to handle textured color images is proposed, which employs a combination of RGB and HSV channels and Sequential Floating Forward Search guided by mean conditional entropy criterion to extract features from the training data. The W-operator is built into the local error estimation used by Imesh to choose the mesh vertices. Furthermore, the W-operator also enables to assign a label to the triangles during the mesh construction, thus allowing to obtain a segmented mesh at the end of the process. The presented results show that the combination of W-operators with Imesh gives rise to a texture classification-based triangle mesh generation framework that outperforms pixel based methods. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.
Resumo:
In this paper, we develop a game theoretic approach for clustering features in a learning problem. Feature clustering can serve as an important preprocessing step in many problems such as feature selection, dimensionality reduction, etc. In this approach, we view features as rational players of a coalitional game where they form coalitions (or clusters) among themselves in order to maximize their individual payoffs. We show how Nash Stable Partition (NSP), a well known concept in the coalitional game theory, provides a natural way of clustering features. Through this approach, one can obtain some desirable properties of the clusters by choosing appropriate payoff functions. For a small number of features, the NSP based clustering can be found by solving an integer linear program (ILP). However, for large number of features, the ILP based approach does not scale well and hence we propose a hierarchical approach. Interestingly, a key result that we prove on the equivalence between a k-size NSP of a coalitional game and minimum k-cut of an appropriately constructed graph comes in handy for large scale problems. In this paper, we use feature selection problem (in a classification setting) as a running example to illustrate our approach. We conduct experiments to illustrate the efficacy of our approach.
Resumo:
In recent years, progress in the area of mobile telecommunications has changed our way of life, in the private as well as the business domain. Mobile and wireless networks have ever increasing bit rates, mobile network operators provide more and more services, and at the same time costs for the usage of mobile services and bit rates are decreasing. However, mobile services today still lack functions that seamlessly integrate into users’ everyday life. That is, service attributes such as context-awareness and personalisation are often either proprietary, limited or not available at all. In order to overcome this deficiency, telecommunications companies are heavily engaged in the research and development of service platforms for networks beyond 3G for the provisioning of innovative mobile services. These service platforms are to support such service attributes. Service platforms are to provide basic service-independent functions such as billing, identity management, context management, user profile management, etc. Instead of developing own solutions, developers of end-user services such as innovative messaging services or location-based services can utilise the platform-side functions for their own purposes. In doing so, the platform-side support for such functions takes away complexity, development time and development costs from service developers. Context-awareness and personalisation are two of the most important aspects of service platforms in telecommunications environments. The combination of context-awareness and personalisation features can also be described as situation-dependent personalisation of services. The support for this feature requires several processing steps. The focus of this doctoral thesis is on the processing step, in which the user’s current context is matched against situation-dependent user preferences to find the matching user preferences for the current user’s situation. However, to achieve this, a user profile management system and corresponding functionality is required. These parts are also covered by this thesis. Altogether, this thesis provides the following contributions: The first part of the contribution is mainly architecture-oriented. First and foremost, we provide a user profile management system that addresses the specific requirements of service platforms in telecommunications environments. In particular, the user profile management system has to deal with situation-specific user preferences and with user information for various services. In order to structure the user information, we also propose a user profile structure and the corresponding user profile ontology as part of an ontology infrastructure in a service platform. The second part of the contribution is the selection mechanism for finding matching situation-dependent user preferences for the personalisation of services. This functionality is provided as a sub-module of the user profile management system. Contrary to existing solutions, our selection mechanism is based on ontology reasoning. This mechanism is evaluated in terms of runtime performance and in terms of supported functionality compared to other approaches. The results of the evaluation show the benefits and the drawbacks of ontology modelling and ontology reasoning in practical applications.
Resumo:
The identification of people by measuring some traits of individual anatomy or physiology has led to a specific research area called biometric recognition. This thesis is focused on improving fingerprint recognition systems considering three important problems: fingerprint enhancement, fingerprint orientation extraction and automatic evaluation of fingerprint algorithms. An effective extraction of salient fingerprint features depends on the quality of the input fingerprint. If the fingerprint is very noisy, we are not able to detect a reliable set of features. A new fingerprint enhancement method, which is both iterative and contextual, is proposed. This approach detects high-quality regions in fingerprints, selectively applies contextual filtering and iteratively expands like wildfire toward low-quality ones. A precise estimation of the orientation field would greatly simplify the estimation of other fingerprint features (singular points, minutiae) and improve the performance of a fingerprint recognition system. The fingerprint orientation extraction is improved following two directions. First, after the introduction of a new taxonomy of fingerprint orientation extraction methods, several variants of baseline methods are implemented and, pointing out the role of pre- and post- processing, we show how to improve the extraction. Second, the introduction of a new hybrid orientation extraction method, which follows an adaptive scheme, allows to improve significantly the orientation extraction in noisy fingerprints. Scientific papers typically propose recognition systems that integrate many modules and therefore an automatic evaluation of fingerprint algorithms is needed to isolate the contributions that determine an actual progress in the state-of-the-art. The lack of a publicly available framework to compare fingerprint orientation extraction algorithms, motivates the introduction of a new benchmark area called FOE (including fingerprints and manually-marked orientation ground-truth) along with fingerprint matching benchmarks in the FVC-onGoing framework. The success of such framework is discussed by providing relevant statistics: more than 1450 algorithms submitted and two international competitions.