858 resultados para Feature Descriptors


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of appropriate features to characterise an output class or object is critical for all classification problems. In order to find optimal feature descriptors for vegetation species classification in a power line corridor monitoring application, this article evaluates the capability of several spectral and texture features. A new idea of spectral–texture feature descriptor is proposed by incorporating spectral vegetation indices in statistical moment features. The proposed method is evaluated against several classic texture feature descriptors. Object-based classification method is used and a support vector machine is employed as the benchmark classifier. Individual tree crowns are first detected and segmented from aerial images and different feature vectors are extracted to represent each tree crown. The experimental results showed that the proposed spectral moment features outperform or can at least compare with the state-of-the-art texture descriptors in terms of classification accuracy. A comprehensive quantitative evaluation using receiver operating characteristic space analysis further demonstrates the strength of the proposed feature descriptors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The conventional manual power line corridor inspection processes that are used by most energy utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent an attractive and cost-effective alternative approach to these monitoring activities. This paper presents a comprehensive investigation into automated remote sensing based power line corridor monitoring, focusing on recent innovations in the area of increased automation of fixed-wing platforms for aerial data collection, and automated data processing for object recognition using a feature fusion process. Airborne automation is achieved by using a novel approach that provides improved lateral control for tracking corridors and automatic real-time dynamic turning for flying between corridor segments, we call this approach PTAGS. Improved object recognition is achieved by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature descriptors (color and texture). The results from our experiments and field survey illustrate the effectiveness of the proposed aircraft control and feature fusion approaches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spatio-Temporal interest points are the most popular feature representation in the field of action recognition. A variety of methods have been proposed to detect and describe local patches in video with several techniques reporting state of the art performance for action recognition. However, the reported results are obtained under different experimental settings with different datasets, making it difficult to compare the various approaches. As a result of this, we seek to comprehensively evaluate state of the art spatio- temporal features under a common evaluation framework with popular benchmark datasets (KTH, Weizmann) and more challenging datasets such as Hollywood2. The purpose of this work is to provide guidance for researchers, when selecting features for different applications with different environmental conditions. In this work we evaluate four popular descriptors (HOG, HOF, HOG/HOF, HOG3D) using a popular bag of visual features representation, and Support Vector Machines (SVM)for classification. Moreover, we provide an in-depth analysis of local feature descriptors and optimize the codebook sizes for different datasets with different descriptors. In this paper, we demonstrate that motion based features offer better performance than those that rely solely on spatial information, while features that combine both types of data are more consistent across a variety of conditions, but typically require a larger codebook for optimal performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As the popularity of digital videos increases, a large number illegal videos are being generated and getting published. Video copies are generated by performing various sorts of transformations on the original video data. For effectively identifying such illegal videos, the image features that are invariant to various transformations must be extracted for performing similarity matching. An image feature can be its local feature or global feature. Among them, local features are powerful and have been applied in a wide variety of computer vision aplications .This paper focuses on various recently proposed local detectors and descriptors that are invariant to a number of image transformations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Patient-specific biomechanical models including local bone mineral density and anisotropy have gained importance for assessing musculoskeletal disorders. However the trabecular bone anisotropy captured by high-resolution imaging is only available at the peripheral skeleton in clinical practice. In this work, we propose a supervised learning approach to predict trabecular bone anisotropy that builds on a novel set of pose invariant feature descriptors. The statistical relationship between trabecular bone anisotropy and feature descriptors were learned from a database of pairs of high resolution QCT and clinical QCT reconstructions. On a set of leave-one-out experiments, we compared the accuracy of the proposed approach to previous ones, and report a mean prediction error of 6% for the tensor norm, 6% for the degree of anisotropy and 19◦ for the principal tensor direction. These findings show the potential of the proposed approach to predict trabecular bone anisotropy from clinically available QCT images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Efficient and effective feature detection and representation is an important consideration when processing videos, and a large number of applications such as motion analysis, 3D scene understanding, tracking etc. depend on this. Amongst several feature description methods, local features are becoming increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational complexity, their performance is still too limited for real world applications. Furthermore, rapid increases in the uptake of mobile devices has increased the demand for algorithms that can run with reduced memory and computational requirements. In this paper we propose a semi binary based feature detectordescriptor based on the BRISK detector, which can detect and represent videos with significantly reduced computational requirements, while achieving comparable performance to the state of the art spatio-temporal feature descriptors. First, the BRISK feature detector is applied on a frame by frame basis to detect interest points, then the detected key points are compared against consecutive frames for significant motion. Key points with significant motion are encoded with the BRISK descriptor in the spatial domain and Motion Boundary Histogram in the temporal domain. This descriptor is not only lightweight but also has lower memory requirements because of the binary nature of the BRISK descriptor, allowing the possibility of applications using hand held devices.We evaluate the combination of detectordescriptor performance in the context of action classification with a standard, popular bag-of-features with SVM framework. Experiments are carried out on two popular datasets with varying complexity and we demonstrate comparable performance with other descriptors with reduced computational complexity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel computer vision techniques have been developed to automatically detect unusual events in crowded scenes from video feeds of surveillance cameras. The research is useful in the design of the next generation intelligent video surveillance systems. Two major contributions are the construction of a novel machine learning model for multiple instance learning through compressive sensing, and the design of novel feature descriptors in the compressed video domain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we investigate the effectiveness of class specific sparse codes in the context of discriminative action classification. The bag-of-words representation is widely used in activity recognition to encode features, and although it yields state-of-the art performance with several feature descriptors it still suffers from large quantization errors and reduces the overall performance. Recently proposed sparse representation methods have been shown to effectively represent features as a linear combination of an over complete dictionary by minimizing the reconstruction error. In contrast to most of the sparse representation methods which focus on Sparse-Reconstruction based Classification (SRC), this paper focuses on a discriminative classification using a SVM by constructing class-specific sparse codes for motion and appearance separately. Experimental results demonstrates that separate motion and appearance specific sparse coefficients provide the most effective and discriminative representation for each class compared to a single class-specific sparse coefficients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a novel coarse-to-fine global localization approach inspired by object recognition and text retrieval techniques. Harris-Laplace interest points characterized by scale-invariant transformation feature descriptors are used as natural landmarks. They are indexed into two databases: a location vector space model (LVSM) and a location database. The localization process consists of two stages: coarse localization and fine localization. Coarse localization from the LVSM is fast, but not accurate enough, whereas localization from the location database using a voting algorithm is relatively slow, but more accurate. The integration of coarse and fine stages makes fast and reliable localization possible. If necessary, the localization result can be verified by epipolar geometry between the representative view in the database and the view to be localized. In addition, the localization system recovers the position of the camera by essential matrix decomposition. The localization system has been tested in indoor and outdoor environments. The results show that our approach is efficient and reliable. © 2006 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a novel coarse-to-fine global localization approach that is inspired by object recognition and text retrieval techniques. Harris-Laplace interest points characterized by SIFT descriptors are used as natural land-marks. These descriptors are indexed into two databases: an inverted index and a location database. The inverted index is built based on a visual vocabulary learned from the feature descriptors. In the location database, each location is directly represented by a set of scale invariant descriptors. The localization process consists of two stages: coarse localization and fine localization. Coarse localization from the inverted index is fast but not accurate enough; whereas localization from the location database using voting algorithm is relatively slow but more accurate. The combination of coarse and fine stages makes fast and reliable localization possible. In addition, if necessary, the localization result can be verified by epipolar geometry between the representative view in database and the view to be localized. Experimental results show that our approach is efficient and reliable. ©2005 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a Robust Content Based Video Retrieval (CBVR) system. This system retrieves similar videos based on a local feature descriptor called SURF (Speeded Up Robust Feature). The higher dimensionality of SURF like feature descriptors causes huge storage consumption during indexing of video information. To achieve a dimensionality reduction on the SURF feature descriptor, this system employs a stochastic dimensionality reduction method and thus provides a model data for the videos. On retrieval, the model data of the test clip is classified to its similar videos using a minimum distance classifier. The performance of this system is evaluated using two different minimum distance classifiers during the retrieval stage. The experimental analyses performed on the system shows that the system has a retrieval performance of 78%. This system also analyses the performance efficiency of the low dimensional SURF descriptor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)