979 resultados para Fatigue behaviour


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tensile and fatigue properties of as-rolled and annealed polycrystalline Cu foils with different thicknesses at the micrometer scale were investigated. Uniaxial tensile testing results showed that with decreasing foil thickness the uniform elongation decreases for both as-rolled and annealed foils, whereas the yield strength and ultimate tensile strength increase for as-rolled foils, but decrease for the annealed foils. For both the as-rolled or annealed foils, bending fatigue resistance decreases with decreasing the foil thickness. Deformation and fatigue damage behaviour of the free-standing foils were characterised as a function of foil thickness. In addition, the fatigue strength of various small-scale Cu foils was compared to understand they physical mechanisms of size effects on mechanical properties of the metallic material at micrometer scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low cycle fatigue cracking of light gauge metal roofing was investigated by testing a number of two-span corrugated roofing assemblies with different spans and fastening systems under cyclic uplift wind loading. Fatigue results correlated quite well with the corresponding static results reported earlier, and revealed the dependence of fatigue behaviour on the fastening system used. A comparison was made of one fastening system with the other regarding fatigue performance .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development of an analytical model used to simulate the fatigue behaviour of roof cladding during the passage of a tropical cyclone. The model incorporated into a computer program uses wind pressure data from wind tunnel tests in combination with time history information on wind speed and direction during a tropical cyclone, and experimental fatigue characteristics data of roof claddings. The wind pressure data is analysed using a rainflow form of analysis, and a fatigue damage index calculated using a modified form of Miner's rule. Some of the results obtained to date and their significance in relation to the review of current fatigue tests are presented. The model appears to be reasonable for comparative estimation of fatigue life, but an improvement of Miner's rule is required for the prediction of actual fatigue life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Total strain controlled low cycle fatigue tests on 316L(N) stainless steel have been conducted in air at various strain rates in the temperature range of 773-873 K to identify the operative time-dependent mechanisms and to understand their influence on the cyclic deformation and fracture behaviour of the alloy. The cyclic stress response at all the testing conditions was marked by an initial hardening followed by stress saturation. A negative strain rate stress response is observed under specific testing conditions which is attributed to dynamic strain ageing (DSA). Transmission electron microscopy studies reveal that there is an increase in the dislocation density and enhanced slip planarity in the DSA regime. Fatigue life is found to decrease with a decrease in strain rate. The degradation in fatigue resistance is attributed to the detrimental effects associated with DSA and oxidation. Quantitative measurement of secondary cracks indicate that both transgranular and intergranular cracking are accelerated predominantly under conditions conducive to DSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low cycle fatigue behaviour of precipitation strengthened nickel-base superalloy 720Li containing a low concentration of interstitial carbon and boron was studied at 25, 400 and 650 degrees C. Cyclic stress response at all temperatures was stable under fully reversed constant total strain amplitude (Delta epsilon/2) when Delta epsilon/2 <= 0.6%. At Delta epsilon/2 > 0.6%, cyclic hardening was followed by softening, until fracture at 25 and 650 degrees C. At 400 degrees C, however, cyclic stress plateaued after initial hardening. Dislocation-dislocation interactions and precipitate shearing were the micromechanisms responsible for the cyclic hardening and softening, respectively. The number of reversals to failure vs. plastic strain amplitude plot exhibits a bilinear Coffin-Manson relation. Transmission electron microscopy substructures revealed that planar slip was the major deformation mode under the conditions examined. However, differences in its distribution were observed to be the cause for the bilinearity in fatigue lives. The presence of fine deformation twins at low Delta epsilon/2 at 650 degrees C suggests the role of twinning in homogenization of cyclic deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strain controlled low cycle fatigue tests on solution annealed nitrogen modified 316L stainless steel have been conducted in air at 823 K to ascertain the influence of strain rate and strain amplitude. Effect of strain rate was examined from 3x10(-5) s(-1) to 3 x 10(-2) at a fixed strain amplitude of +/- 0.6%. The influence of strain amplitude was evaluated between +/- 0.25 % and +/- 1.0% at a constant strain rate of 3x10(-3) s(-1). The cyclic stress response at all testing conditions is characterized by an initial hardening followed by saturation. Serrated flow, a characteristic feature of dynamic strain ageing (DSA) was seen at strain rates lower than 3x10(-3) s(-1). Fatigue life was found to decrease with decrease in strain rate. The reduction in fatigue resistance is attributed mainly to the detrimental effects associated with DSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conventional thin film capacitor heterostructure, consisting of sol-gel deposited lead zirconium titanate (PZT) layers with sputtered platinum top and bottom electrodes, was subjected to fatiguing pulses at a variety of frequencies. The fatigue characteristics were compared to those of a similarly processed capacitor in which a ~20nm tungsten trioxide layer had been deposited, using pulsed laser deposition, between the ferroelectric and upper electrode. The expectation was that, because of its ability to accommodate considerable oxygen non-stoichiometry, tungsten trioxide (WO3) might act as an efficient sink for any oxygen vacancies flushed to the electrode-ferroelectric boundary layer during repetitive switching, and hence would improve the fatigue characteristics of the thin film capacitor. However, it was found that, in general, the addition of tungsten trioxide actually increases the rate of fatigue. It appears that any potential benefit from the WO3, in terms of absorbing oxygen vacancies, is far outweighed by it causing dramatically increased charge injection in the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shape memory NiTi alloys have been used extensively for medical device applications such as orthopedic, dental, vascular and cardiovascular devices on account of their unique shape memory effect (SME) and super-elasticity (SE). Laser welding is found to be the most suitable method used to fabricate NiTi-based medical components. However, the performance of laser-welded NiTi alloys under corrosive environments is not fully understood and a specific focus on understanding the corrosion fatigue behaviour is not evident in the literature. This study reveals a comparison of corrosion fatigue behaviour of laser-welded and bare NiTi alloys using bending rotation fatigue (BRF) test which was integrated with a specifically designed corrosion cell. The testing environment was Hanks’ solution (simulated body fluid) at 37.5oC. Electrochemical impedance spectroscopic (EIS) measurement was carried out to monitor the change of corrosion resistance at different periods during the BRF test. Experiments indicate that the laser-welded NiTi alloy would be more susceptible to the corrosion fatigue attack than the bare NiTi alloy. This finding can serve as a benchmark for the product designers and engineers to determine the factor of safety of NiTi medical devices fabricated using laser welding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrosion fatigue is a fracture process as a consequence of synergistic interactions between the material structure, corrosive environment and cyclic loads/strains. It is difficult to be detected and can cause unexpected failure of engineering components in use. This study reveals a comparison of corrosion fatigue behaviour of laser-welded and bare NiTi wires using bending rotation fatigue (BRF) test coupled with a specifically-designed corrosion cell. The testing medium was Hanks’ solution (simulated body fluid) at 37.5 oC. Electrochemical impedance spectroscopic (EIS) measurement was carried out to monitor the change of corrosion resistance of sample during the BRF test at different periods of time. Experiments indicate that the laser-welded NiTi wire would be more susceptible to the corrosion fatigue attack than the bare NiTi wire. This study can serve as a benchmark for the product designers and engineers to understand the corrosion fatigue behaviour of the NiTi laser weld joint and determine the fatigue life safety factor for NiTi medical devices/implants involving laser welding in the fabrication process.