853 resultados para Fatigue Damage


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reliable predictions of remaining lives of civil or mechanical structures subjected to fatigue damage are very difficult to be made. In general, fatigue damage is extremely sensitive to the random variations of material mechanical properties, environment and loading. These variations may induce large dispersions when the structural fatigue life has to be predicted. Wirsching (1970) mentions dispersions of the order of 30 to 70 % of the mean calculated life. The presented paper introduces a model to estimate the fatigue damage dispersion based on known statistical distributions of the fatigue parameters (material properties and loading). The model is developed by expanding into Taylor series the set of equations that describe fatigue damage for crack initiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crack formation and growth in steel bridge structural elements may be due to loading oscillations. The welded elements are liable to internal discontinuities along welded joints and sensible to stress variations. The evaluation of the remaining life of a bridge is needed to make cost-effective decisions regarding inspection, repair, rehabilitation, and replacement. A steel beam model has been proposed to simulate crack openings due to cyclic loads. Two possible alternatives have been considered to model crack propagation, which the initial phase is based on the linear fracture mechanics. Then, the model is extended to take into account the elastoplastic fracture mechanic concepts. The natural frequency changes are directly related to moment of inertia variation and consequently to a reduction in the flexural stiffness of a steel beam. Thus, it is possible to adopt a nondestructive technique during steel bridge inspection to quantify the structure eigenvalue variation that will be used to localize the grown fracture. A damage detection algorithm is developed for the proposed model and the numerical results are compared with the solutions achieved by using another well know computer code.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

by Dennis Arthur Burianek.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes a method whereby the distribution of fatigue damage along riser tensioner ropes is calculated, taking account of heave motion, set tension, system geometry, tidal range and rope specification. From these data the distribution of damage along the rope is calculated for a given time period using a Miner’s summation method. This information can then be used to help the operator decide on the length of rope to ‘slip and cut’ whereby a length from the end of the rope is removed and the rope moved through the system from a storage drum such that sections of rope that have already suffered significant fatigue damage are not moved to positions where there is another peak in the distribution. There are two main advantages to be gained by using the fatigue damage model. The first is that it shows the amount of fatigue damage accumulating at different points along the rope, enabling the most highly damaged section to be removed well before failure. The second is that it makes for greater efficiency, as damage can be spread more evenly along the rope over time, avoiding the need to scrap long sections of undamaged rope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous damage models have been developed in order to analyze seismic behavior. Among the different possibilities existing in the literature, it is very clear that models developed along the lines of continuum damage mechanics are more consistent with the definition of damage as a phenomenon with mechanical consequences because they include explicitly the coupling between damage and mechanical behavior. On the other hand, for seismic processes, phenomena such as low cycle fatigue may have a pronounced effect on the overall behavior of the frames and, therefore, its consideration turns out to be very important. However, most of existing models evaluate the damage only as a function of the maximum amplitude of cyclic deformation without considering the number of cycles. In this paper, a generalization of the simplified model proposed by Cipollina et al. [Cipollina A, López-Hinojosa A, Flórez-López J. Comput Struct 1995;54:1113–26] is made in order to include the low cycle fatigue. Such a model employs in its formulation irreversible thermodynamics and internal state variable theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage models based on the Continuum Damage Mechanics (CDM) include explicitly the coupling between damage and mechanical behavior and, therefore, are consistent with the definition of damage as a phenomenon with mechanical consequences. However, this kind of models is characterized by their complexity. Using the concept of lumped models, possible simplifications of the coupled models have been proposed in the literature to adapt them to the study of beams and frames. On the other hand, in most of these coupled models damage is associated only with the damage energy release rate which is shown to be the elastic strain energy. According to this, damage is a function of the maximum amplitude of cyclic deformation but does not depend on the number of cycles. Therefore, low cycle effects are not taking into account. From the simplified model proposed by Flórez-López, it is the purpose of this paper to present a formulation that allows to take into account the degradation produced not only by the peak values but also by the cumulative effects such as the low cycle fatigue. For it, the classical damage dissipative potential based on the concept of damage energy release rate is modified using a fatigue function in order to include cumulative effects. The fatigue function is determined through parameters such as the cumulative rotation and the total rotation and the number of cycles to failure. Those parameters can be measured or identified physically through the haracteristics of the RC. So the main advantage of the proposed model is the possibility of simulating the low cycle fatigue behavior without introducing parameters with no suitable physical meaning. The good performance of the proposed model is shown through a comparison between numerical and test results under cycling loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies have been developed to analyze the structural seismic behavior through the damage index concept. The evaluation of this index has been employed to quantify the safety of new and existing structures and, also, to establish a framework for seismic retrofitting decision making of structures. Most proposed models are based in a posterthquake evaluation in such a way they uncouple the structural response from the damage evaluation. In this paper, a generalization of the model by Flórez-López (1995) is proposed. The formulation employs irreversible thermodynamics and internal state variable theory applied to the study of beams and frames and it allows and explicit coupling between the degradation and the structural mechanical behavior. A damage index es defined in order to model elastoplasticity coupled with damage and fatigue damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work a constitutive model is developed which permits the simulation of the low cycle fatigue behaviour in steel framed structures. In the elaboration of this model, the concepts of the mechanics of continuum medium are applied on lumped dissipative models. In this type of formulation an explicit coupling between the damage and the structural mechanical behaviour is employed, allowing the possibility of considering as a whole different coupled phenomena. A damage index is defined in order to model elastoplasticity coupled with damage and fatigue damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the evaluation of a new non-contact technique to assess the fatigue damage state of CFRP structures by measuring surface roughness parameters. Surface roughness and stiffness degradation have been measured in CFRP coupons cycled with constant amplitude loads, and a Pearson?s correlation of 0.79 was obtained between both variables. Results suggest that changes on the surface roughness measured in strategic zones of components made of the evaluated CFRP, could be indicative of the level of damage due to fatigue loads. This methodology could be useful for other FRP due to similarities in the fatigue damage process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an optical sensing methodology to estimate the fatigue damage state of structures made of carbon fiber reinforced polymer (CFRP), by measuring variations on the surface roughness. Variable amplitude loads (VAL), which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF) have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL) obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information entropy measured from acoustic emission (AE) waveforms is shown to be an indicator of fatigue damage in a high-strength aluminum alloy. Several tension-tension fatigue experiments were performed with dogbone samples of aluminum alloy, Al7075-T6, a commonly used material in aerospace structures. Unlike previous studies in which fatigue damage is simply measured based on visible crack growth, this work investigated fatigue damage prior to crack initiation through the use of instantaneous elastic modulus degradation. Three methods of measuring the AE information entropy, regarded as a direct measure of microstructural disorder, are proposed and compared with traditional damage-related AE features. Results show that one of the three entropy measurement methods appears to better assess damage than the traditional AE features, while the other two entropies have unique trends that can differentiate between small and large cracks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: We present an optical sensing methodology to estimate the fatigue damage stateof structures made of carbon fiber reinforced polymer (CFRP), by measuring variations on the surface roughness. Variable amplitude loads (VAL), which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF) have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL) obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriated for the load capacity installed. At the present time there are no standard specimen’s geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriated for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress is uniform and maximum with two limit phase shift loading conditions. Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS) method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests. © 2014, Gruppo Italiano Frattura. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriate for the load capacity installed. At the present time there are no standard specimen's geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriate for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress distributions on the loading directions are uniform and maximum with two limit phase shift loading conditions (delta = 0 degrees and (delta = 180 degrees). Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS) method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests