878 resultados para Fate and fatalism
Resumo:
A simulation model (PCPF-B) was developed based on the PCPF-1 model to predict the runoff of pesticides from paddy plots to a drainage canal in a paddy block. The block-scale model now comprises three modules: (1) a module for pesticide application, (2) a module for pesticide behavior in paddy fields, and (3) a module for pesticide concentration in the drainage canal. The PCPF-B model was first evaluated by published data in a single plot and then was applied to predict the concentration of bensulfuron-methyl in one paddy block in the Sakura river basin, Ibaraki, Japan, where a detailed field survey was conducted. The PCPF-B model simulated well the behavior of bensulfuron-methyl in individual paddy plots. It also reflected the runoff pattern of bensulfuron-methyl at the block outlet, although overestimation of bensulfuronmethyl concentrations occurred due to uncertainty in water balance estimation. Application of water management practice such as water-holding period and seepage control also affected the performance of the model. A probabilistic approach may be necessary for a comprehensive risk assessment in large-scale paddy areas.
Resumo:
Experiments were conducted to determine the fate of bensulfuron-methyl (BSM) and imazosulfuron (IMS) under paddy conditions. Initially, laboratory experiments were conducted and the photolysis half-lives of the two herbicides were found to be much shorter than their hydrolysis half-lives in aqueous solutions. In the aerobic water–soil system, dissipation followed first-order kinetics with water half-lives of 9.1 and 11.0 days and soil half-lives of 12.4 and 18.5 days (first phase) and 35.0 and 44.1 days (second phase) for bensulfuron-methyl and imazosulfuron, respectively. However, the anaerobic soil half-lives were only 12.7 and 9.8 days for BSM and IMS, respectively. The values of K d were determined to be 16.0 and 13.8 for BSM and IMS, respectively. Subsequent field measurements for the two herbicides revealed that dissipation of both herbicides in paddy water involved biphasic first-order kinetics, with the dissipation rates in the first phase being much faster than those in the second phase. The dissipation of bensulfuron-methyl and imazosulfuron in the paddy surface soil were also followed biphasic first-order kinetics. These results were then used as input parameters for the PCPF-1 model to simulate the fate and transport of BSM and IMS in the paddy environment (water and 1-cm surface soil layer). The measured and simulated values agreed well and the mass balance error during the simulation period was −1.2 and 2.8% of applied pesticide, respectively, for BSM and IMS.
Resumo:
The fate and transport of tricyclazole and imidacloprid in paddy plots after nursery-box application was monitored. Water and surface soil samples were collected over a period of 35 days. Rates of dissipation from paddy waters and soils were also measured. Dissipation of the two pesticides from paddy water can be described by first-order kinetics. In the soil, only the dissipation of imidacloprid fitted to the simple first-order kinetics, whereas tricyclazole concentrations fluctuated until the end of the monitoring period. Mean half-life (DT50) values for tricyclazole were 11.8 and 305 days, respectively, in paddy water and surface soil. The corresponding values of imidacloprid were 2.0 and 12.5 days, respectively, in water and in surface soil. Less than 0.9% of tricyclazole and 0.1% of imidacloprid were lost through runoff during the monitoring period even under 6.3 cm of rainfall. The pesticide formulation seemed to affect the environmental fate of these pesticides when these results were compared to those of other studies.
Fate and effects of Nodularia spumigena and its toxin, nodularin, in Baltic Sea planktonic food webs
Resumo:
Suomen rannikkovesien rehevöityminen: jokivesien tuomien ravinteiden alkuperä, käyttäytyminen ja vaikutukset.
Resumo:
For the purpose of understanding the environmental fate of microcystins (MCs) and the potential health risks caused by toxic cyanobacterial blooms in Lake Taihu, a systematic investigation was carried out from February 2005 to January 2006. The distribution of MCs in the water column, and toxin bioaccumulations in aquatic organisms were surveyed. The results suggested that Lake Taihu is heavily polluted during summer months by toxic cyanobacterial blooms (with a maximum biovolume of 6.7 x 10(8) cells/L) and MCs. The maximum concentration of cell-bound toxins was 1.81 mg/g (DW) and the dissolved MCs reached a maximum level of 6.69 mu g/L. Dissolved MCs were always found in the entire water column at all sampling sites throughout the year. Our results emphasized the need for tracking MCs not only in the entire water column but also at the interface between water and sediment. Seasonal changes of MC concentrations in four species of hydrophytes (Eichhornic crassipes, Potamogeton maackianus, Alternanthera philoxeroides and Myriophyllum spicatum) ranged from 129 to 1317, 147 to 1534, 169 to 3945 and 124 to 956 ng/g (DW), respectively. Toxin accumulations in four aquatic species (Carassius auratus auratu, Macrobrachium nipponensis, Bellamya aeruginosa and Cristaria plicata) were also analyzed. Maximum toxin concentrations in the edible organs and non-edible visceral organs ranged from 378 to 730 and 754 to 3629 ng/g (DW), respectively. Based on field studies in Lake Taihu, risk assessments were carried out, taking into account the WHO guidelines and the tolerable daily intake (TDI) for MCs. Our findings suggest that the third largest lake in China poses serious health threats when serving as a source of drinking water and for recreational use. In addition, it is likely to be unsafe to consume aquatic species harvested in Lake Taihu due to the high-concentrations of accumulated MCs. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Volatile organic compound (VOC) contamination of subsurface geological material and groundwater was discovered on the Nortel Monkstown industrial site, Belfast, Northern Ireland. The objectives of this study were to (1) investigate the characteristics of the geological material and its influences on contaminated groundwater flow across the site using borehole logs and hydrological evaluations, and (2) identify the contaminants and examine their distribution in the subsurface geological material and groundwater using chemical analysis. This report focuses on the eastern car park (ECP) which was a former storage area associated with trichloroethene (TCE) degreasing operations. This is where the greatest amount of volatile organic compounds (VOCs), particularly TCE, were detected. The study site is on a complex deposit of clayey glacial till with discontinuous coarser grained lenses, mainly silts, sands and gravel, which occur at 0.45–7.82 m below ground level (bgl). The lenses overall form an elongated formation that acts as a small unconfined shallow aquifer. There is a continuous low permeable stiff clayey till layer beneath the lenses that performs as an aquitard to the groundwater. Highest concentrations of VOCs, mainly TCE, in the geological material and groundwater are in these coarser lenses at ~4.5–7 m bgl. Highest TCE measurements at 390,000 µg L-1 for groundwater and at 39,000 µg kg-1 at 5.7 m for geological material were in borehole GA19 in the coarse lens zone. It is assumed that TCE gained entrance to the subsurface near this borehole where the clayey till was thin to absent above coarse lenses which provided little retardation to the vertical migration of this dense non-aqueous phase liquid (DNAPL) into the groundwater. However, TCE is present in low concentrations in the geological material overlying the coarse lens zone. Additionally, VOCs appear to be associated with poorly drained layers and in peat
Resumo:
Variability in nitrogen fate and transport in different catchments types is often not considered. This research considers the importance of such nitrogen processes within groundwater pathways in two agricultural catchments in Ireland; a well drained catchment, underlain by karstified Carboniferous limestone, and a poorly drained catchment, underlain by Silurian greywacke.
Depth specific low-flow groundwater sampling was used to evaluate the hydrochemical stratification in groundwater. Groundwater samples, as well as surface water samples, along river courses were analysed for nitrogen species (NO3, NH4 and NO2) and nitrate isotopes (d15N and d18O) as well as field parameters and major ions
.
The dominant nitrate (NO3) groundwater pathway in the poorly drained greywacke catchment is through the shallow weathered bedrock, as indicated by transmissivity values and the ionic and isotopic signatures, and a clear reduction in NO3 concentration is observed with depth. A similar chloride trend would suggest dilution is a major factor, however d15N and d18O isotopic values producing an enrichment ratio of 1.8 indicate that denitrification is also an important process involved in the fate of the NO3 within the groundwater flow system. This consistent trend with depth is in contrast to the stratification pattern observed in the karstified catchment. NO3 was not detected in the shallow groundwater pathway; the dominant groundwater pathway is in the deeper groundwater where there is little change in the nitrate isotope values with depth (d15N values range between 4.1 and 4.6 ‰). This deeper groundwater contributes the dominant proportion of the river flow through a number of springs. As a result, the deeper groundwater, springs and river have a similar ionic signature and NO3 concentration range (23 ± 3 mg/l). Despite this pattern, the NO3 isotopes show a distinct difference in isotopic values between the deeper groundwater in the diffuse karst and the springs indicating some denitrification is occurring during groundwater discharge into the river. Furthermore the isotopes give an indication of the variability of the spatial extent of the springs and the complexities of the fissures through which they are fed. The results of this study clearly show the importance of the geology in the fate and transport of NO3 in agricultural catchments.
Resumo:
The emergence of large-scale long-term unemployment in the Republic of Ireland suggests that it might provide an interesting case to which to apply the concept of an 'underclass'. In this paper we explore the relationship between labour-market marginality, deprivation, and fatalism. The available evidence in relation to both social isolation and milieu effects suggests that the term 'underclass' can have only a very limited applicability in the Irish case. Instead, what we ate confronted with is different types of working-class marginalization arising from the rapid and uneven nature of class transformation in Ireland and changing patterns of emigration. In relation to what we have termed 'pervasive marginalization' the costs of economic change have been borne disproportionately by those members of the younger cohorts originating in the lower working class rather than by those in particular locations. The evidence relating to the social and psychological consequences of labour-market detachment, rather than providing support for the value of an 'underclass' perspective, confirms the continued relevance of class analysis.