848 resultados para Fat polymorphism
Resumo:
An exhaustive analysis of the crystallisation behaviour of palm oil was performed using low-resolution magnetic pulsed nuclear resonance, differential scanning calorimetry, polarised light microscopy and X-ray diffraction. The aim of this study was to characterise the changes induced in the crystallisation of palm oil by the addition of two different levels of tripalmitin and two different types of monoacylglycerols. The addition of monoacylglycerols led to the formation of a large number of crystallisation nuclei without changing the final solids content, accelerating the process of crystal formation, leading to the formation of smaller crystals than those found in the refined palm oil. Higher levels of tripalmitin produced crystals with larger dimensions, reducing the induction period and resulted in a higher level of solids at the end of the crystallisation period. The addition of monoacylglycerols and tripalmitin induced the formation of a polymorphic beta-form. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Background: Forearm blood flow responses during mental stress are greater in individuals homozygous for the Glu27 allele. A high-fat meal is associated with impaired endothelium-dependent dilatation. We investigated the impact of high-fat ingestion on the muscle vasodilatory responses during mental stress in individuals with the Glu27 allele and those with the Gln27 allele of the beta(2)-adrenoceptor gene. Methods: A total of 162 preselected individuals were genotyped for the Glu27Gln beta(2)-adrenoceptor polymorphism. Twenty-four individuals participated in the study. Fourteen were homozygous for the Gln27 allele (Gln27Gln, 40 +/- 2 years; 64 +/- 2 kg), and 10 were homozygous for the Glu27 allele (Glu27Glu, 40 +/- 3 years; 65 +/- 3 kg). Forearm blood flow was evaluated by venous occlusion plethysmography before and after ingestion of 62 g of fat. Results: The high-fat meal caused no changes in baseline forearm vascular conductance (FVC, 2.2 +/- 0.1 vs. 2.4 +/- 0.2; P = 0.27, respectively), but reduced FVC responses to mental stress (1.5 +/- 0.2 vs. 0.8 +/- 0.2 units; P = 0.04). When volunteers were divided according to their genotypes, baseline FVC was not different between groups (Glu27Glu = 2.4 +/- 0.1 vs. Gln27Gln = 2.1 +/- 0.1 units; P = 0.08), but it was significantly greater in Glu27Glu individuals during mental stress (1.9 +/- 0.4 vs. 1.0 +/- 0.3 units; P = 0.04). High-fat intake eliminated the difference in FVC responses between Glu27Glu and Gln27Gln individuals (FVC, 1.3 +/- 0.4 vs. 1.2 +/- 0.4; P = 0.66, respectively). Conclusion: These findings demonstrate that a high-fat meal impairs muscle vasodilatation responses to mental stress in humans. However, this reduction can be attributed to the presence of the homozygous Glu27 allele of the beta(2)-adrenoceptor gene.
Resumo:
Background - Both genetic and environmental factors affect the risk of colorectal cancer (CRC). Objective - We aimed to examine the interaction between the D1822V polymorphism of the APC gene and dietary intake in persons with CRC. Design - Persons with CRC (n = 196) and 200 healthy volunteers, matched for age and sex in a case-control study, were evaluated with respect to nutritional status and lifestyle factors and for the D1822V polymorphism. Results - No significant differences were observed in energy and macronutrient intakes. Cases had significantly (P < 0.05) lower intakes of carotenes, vitamins C and E, folate, and calcium than did controls. Fiber intake was significantly (P = 0.004) lower in cases than in controls, whereas alcohol consumption was associated with a 2-fold risk of CRC. In addition, cases were significantly (P = 0.001) more likely than were controls to be sedentary. The homozygous variant for the APC gene (VV) was found in 4.6% of cases and in 3.5% of controls. Examination of the potential interactions between diet and genotype found that a high cholesterol intake was associated with a greater risk of colorectal cancer only in noncarriers (DD) of the D1822V APC allele (odds ratio: 1.66; 95% CI: 1.00, 2.76). In contrast, high fiber and calcium intakes were more markedly associated with a lower risk of CRC in patients carrying the polymorphic allele (DV/VV) (odds ratio: 0.50; 95% CI: 0.27, 0.94 for fiber; odds ratio: 0.51; 95% CI: 0.28, 0.93 for calcium) than in those without that allele. Conclusion - These results suggest a significant interaction between the D1822V polymorphism and the dietary intakes of cholesterol, calcium, and fiber for CRC risk.
Resumo:
Abstract Background Forearm blood flow responses during mental stress are greater in individuals homozygous for the Glu27 allele. A high-fat meal is associated with impaired endothelium-dependent dilatation. We investigated the impact of high-fat ingestion on the muscle vasodilatory responses during mental stress in individuals with the Glu27 allele and those with the Gln27 allele of the β2-adrenoceptor gene. Methods A total of 162 preselected individuals were genotyped for the Glu27Gln β2-adrenoceptor polymorphism. Twenty-four individuals participated in the study. Fourteen were homozygous for the Gln27 allele (Gln27Gln, 40 ± 2 years; 64 ± 2 kg), and 10 were homozygous for the Glu27 allele (Glu27Glu, 40 ± 3 years; 65 ± 3 kg). Forearm blood flow was evaluated by venous occlusion plethysmography before and after ingestion of 62 g of fat. Results The high-fat meal caused no changes in baseline forearm vascular conductance (FVC, 2.2 ± 0.1 vs. 2.4 ± 0.2; P = 0.27, respectively), but reduced FVC responses to mental stress (1.5 ± 0.2 vs. 0.8 ± 0.2 units; P = 0.04). When volunteers were divided according to their genotypes, baseline FVC was not different between groups (Glu27Glu = 2.4 ± 0.1 vs. Gln27Gln = 2.1 ± 0.1 units; P = 0.08), but it was significantly greater in Glu27Glu individuals during mental stress (1.9 ± 0.4 vs. 1.0 ± 0.3 units; P = 0.04). High-fat intake eliminated the difference in FVC responses between Glu27Glu and Gln27Gln individuals (FVC, 1.3 ± 0.4 vs. 1.2 ± 0.4; P = 0.66, respectively). Conclusion These findings demonstrate that a high-fat meal impairs muscle vasodilatation responses to mental stress in humans. However, this reduction can be attributed to the presence of the homozygous Glu27 allele of the β2-adrenoceptor gene.
Resumo:
The objective of this study was to evaluate the effect of genetic polymorphism of kappa-casein, breed and seasonality on the physicochemical characteristics, composition and stability of milk in commercial dairy herds. A total of 879 milk and blood samples were collected from 603 Holstein and 276 Girolando cows, obtained during rainy and dry seasons. Milk samples were analyzed to determine the physicochemical characteristics, composition and ethanol stability, while blood samples were subjected to polymerase chain reaction to identify the kappa-casein genotype. The frequencies of genotypes AA, AB and BB of k-casein were respectively, 66.83, 31.84 and 1.33% for Holstein, and 71.38, 27.90 and 0.72% for the Girolando cows, respectively. The A allele was more frequent than the B allele, both for Holstein (0.827 and 0.173) and Girolando cows (0.853 and 0.147), respectively. Cows of AB and BB genotypes showed a higher milk fat content compared to the AA genotype. There was an interaction between breed and seasonality on the concentration of milk urea with higher values for Holstein and Girolando cows in the rainy and dry season, respectively. The levels of lactose, total solids, crude protein, true protein, casein and the casein:true protein ratio were higher during the dry season, while during the rainy season, the somatic cell count and milk urea concentration were higher. There was no association between milk stability and k-casein genotypes, but Holstein cows showed higher milk stability than Girolando cows, and milk was more stable during the rainy season than during the dry season.
Resumo:
Leptin, thyroglobulin and diacylglycerol O-acyltransferase play important roles in fat metabolism. Fat deposition has an influence on meat quality and consumers' choice. The aim of this study was to determine allele and genotype frequencies of polymorphisms of the bovine genes, which encode leptin (LEP), thyroglobulin (TG) and diacylglycerol O-acyltransferase (DGAT1). A further objective was to establish the effects of these polymorphisms on meat characteristics. We genotyped 147 animals belonging to the Nelore (Bos indicus), Canchim (5/8 Bos taurus + 3/8 Bos indicus), Rubia Gallega X Nelore (1/2 Bos taurus + 1/2 Bos indicus), Brangus Three-way cross (9/16 Bos taurus + 7/16 Bos indicus) and Braunvieh Three-way cross (3/4 Bos taurus + 1/4 Bos indicus) breeds. Backfat thickness, total lipids, marbling score, ribeye area and shear force were fitted, using the General Linear Model (GLM) procedure of the SAS software. The least square means of genotypes and genetic groups were compared using Tukey's test. Allele frequencies vary among the genetic groups, depending on Bos indicus versus Bos taurus influence. The LEP polymorphism segregates in pure Bos indicus Nelore animals, which is a new finding. The T allele of TG is fixed in Nelore, and DGAT1 segregates in all groups, but the frequency of allele A is lower in Nelore animals. The results showed no association between the genotypes and traits studied, but a genetic group effect on these traits was found. So, the genetic background remains relevant for fat deposition and meat tenderness, but the gene markers developed for Bos taurus may be insufficient for Bos indicus.
Resumo:
This work evaluated chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) blends, with 20%, 25%, 30%, 35% and 40%(w/w) FHCSO content. Interesterification produced reduction of trisaturated and increase in monounsaturated and diunsaturated triacylglycerols contents, which caused important changes in temperatures and enthalpies associated with the crystallization and melting thermograms. It was verified reduction in medium crystal diameter in all blends, in addition crystal morphology modification. Crystallization kinetics revealed that crystal formation induction period and maximum solid fat content were altered according to FHCSO content in original blends and as a result of random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that interesterification decreased crystallization rates and altered crystalline morphology. However, X-ray diffraction analyses showed randomization did not change the original crystalline polymorphism. The original and interesterified blends had significant predominance of beta` polymorph, which is interesting for several food applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Blends of soybean oil (SO) and fully hydrogenated soybean oil (FHSBO), with 10, 20, 30, 40, and 50% (w/w) FHSBO content were interesterified under the following conditions: 20 min reaction time, 0.4% sodium methoxide catalyst, and 500 rpm stirring speed, at 100 A degrees C. The original and interesterified blends were examined for triacylglycerol composition, thermal behavior, microstructure, crystallization kinetics, and polymorphism. Interesterification produced substantial rearrangement of the triacylglycerol species in all the blends, reduction of trisaturated triacylglycerol content and increase in monounsaturated-disaturated and diunsaturated-monosaturated triacylglycerols. Evaluation of thermal behavior parameters showed linear relations with FHSBO content in the original blends. Blend melting and crystallization thermograms were significantly modified by the randomization. Interesterification caused significant reductions in maximum crystal diameter in all blends, in addition to modifying crystal morphology. Characterization of crystallization kinetics revealed that crystal formation induction period (tau (SFC)) and maximum solid fat content (SFC(max)) were altered according to FHSBO content in the original blends and as a result of the random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that-as compared with the original blends-interesterification decreased crystallization velocities and modified crystallization processes, altering crystalline morphology and nucleation mechanism. X-ray diffraction analyses revealed that interesterification altered crystalline polymorphism. The interesterified blends showed a predominance of the beta` polymorph, which is of more interest for food applications.
Resumo:
The objective was to evaluate the effect of beta-lactoglobulin (beta-lg) polymorphism and seasonality on milk composition (fat, lactose, total solids, milk urea nitrogen, total protein, true protein, casein and somatic cell counts) of Holstein and Girolando cows. Milk and blood samples from 278 Holsteins cows and 156 Girolando cows were taken during two dry seasons and two rainy seasons, for milk composition analysis and to determine beta-lg genotypes, respectively. BB genotype was the most frequent for both breeds, followed by AA genotype for Holstein (BB>AA>AB) and by AB for Girolando cows (BB>AB>AA). No differences were found in milk compositional characteristics among genetic variants of beta-lg (AA, AB and BB) either between Holstein or Girolando cows. No association between milk composition and beta-lg genetic polymorphism was observed. During the dry season, independently of the breed considered, higher contents of lactose, true protein, casein and casein :true protein ratio were found.
Resumo:
Background & aims: Crohn’s disease (CD) is a multifactorial disease where resistance to apoptosis is one major defect. Also, dietary fat intake has been shown to modulate disease activity. We aimed to explore the interaction between four single nucleotide polymorphisms (SNPs) in apoptotic genes and dietary fat intake in modulating disease activity in CD patients. Methods: Polymerase Chain Reaction (PCR) and Restriction Fragment Length Polymorphism (RFLP) techniques were used to analyze Caspase9þ93C/T, FasLigand-843C/T, Peroxisome Proliferator-Activated Receptor gammaþ161C/T and Peroxisome Proliferator-Activated Receptor gamma Pro12Ala SNPs in 99 patients with CD and 116 healthy controls. Interactions between SNPs and fat intake in modulating disease activity were analyzed using regression analysis. Results: None of the polymorphisms analyzed influenced disease susceptibility and/or activity, but a high intake of total, saturated and monounsaturated fats and a higher ratio of n-6/n-3 polyunsaturated fatty acids (PUFA), was associated with a more active phenotype (p < 0.05). We observed that the detrimental effect of a high intake of total and trans fat was more marked in wild type carriers of the Caspase9þ93C/T polymorphism [O.R (95%CI) 4.64 (1.27e16.89) and O.R (95%CI) 4.84 (1.34e17.50)]. In the Peroxisome Proliferator-Activated Receptor gamma Pro12Ala SNP, we also observed that a high intake of saturated and monounsaturated fat was associated to a more active disease in wild type carriers [OR (95%CI) 4.21 (1.33e13.26) and 4.37 (1.52e12.51)]. Finally, a high intake of n-6 PUFA was associated with a more active disease in wild type carriers for the FasLigand-843C/T polymorphism [O.R (95%CI) 5.15 (1.07e24.74)]. Conclusions: To our knowledge, this is the first study to disclose a synergism between fat intake and SNPs in apoptotic genes in modulating disease activity in CD patients.
Resumo:
Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻&supl;³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
Nitric oxide (NO) plays a major role in the regulation of cardiovascular and metabolic homeostasis, as evidenced by insulin resistance and arterial hypertension in endothelial NO synthase (eNOS) null mice. Extrapolation of these findings to humans is difficult, however, because eNOS gene deficiency has not been reported. eNOS gene polymorphism and impaired NO synthesis, however, have been reported in several cardiovascular disease states and could predispose to insulin resistance. High-fat diet induces insulin resistance and arterial hypertension in normal mice. To test whether partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension during metabolic stress, we examined effects of an 8-week high-fat diet on insulin sensitivity (euglycemic clamp) and arterial pressure in eNOS(+/-) mice. When fed a normal diet, these mice had normal insulin sensitivity and were normotensive. When fed a high-fat diet, however, eNOS(+/-) mice developed exaggerated arterial hypertension and had fasting hyperinsulinemia and a 35% lower insulin-stimulated glucose utilization than control mice. The partial deletion of the eNOS gene does not alter insulin sensitivity or blood pressure in mice. When challenged with nutritional stress, however, partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension, providing further evidence for the importance of this gene in linking metabolic and cardiovascular disease.
Resumo:
Body fat distribution, particularly centralized obesity, is associated with metabolic risk above and beyond total adiposity. We performed genome-wide association of abdominal adipose depots quantified using computed tomography (CT) to uncover novel loci for body fat distribution among participants of European ancestry. Subcutaneous and visceral fat were quantified in 5,560 women and 4,997 men from 4 population-based studies. Genome-wide genotyping was performed using standard arrays and imputed to ~2.5 million Hapmap SNPs. Each study performed a genome-wide association analysis of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), VAT adjusted for body mass index, and VAT/SAT ratio (a metric of the propensity to store fat viscerally as compared to subcutaneously) in the overall sample and in women and men separately. A weighted z-score meta-analysis was conducted. For the VAT/SAT ratio, our most significant p-value was rs11118316 at LYPLAL1 gene (p = 3.1 × 10E-09), previously identified in association with waist-hip ratio. For SAT, the most significant SNP was in the FTO gene (p = 5.9 × 10E-08). Given the known gender differences in body fat distribution, we performed sex-specific analyses. Our most significant finding was for VAT in women, rs1659258 near THNSL2 (p = 1.6 × 10-08), but not men (p = 0.75). Validation of this SNP in the GIANT consortium data demonstrated a similar sex-specific pattern, with observed significance in women (p = 0.006) but not men (p = 0.24) for BMI and waist circumference (p = 0.04 [women], p = 0.49 [men]). Finally, we interrogated our data for the 14 recently published loci for body fat distribution (measured by waist-hip ratio adjusted for BMI); associations were observed at 7 of these loci. In contrast, we observed associations at only 7/32 loci previously identified in association with BMI; the majority of overlap was observed with SAT. Genome-wide association for visceral and subcutaneous fat revealed a SNP for VAT in women. More refined phenotypes for body composition and fat distribution can detect new loci not previously uncovered in large-scale GWAS of anthropometric traits.
Resumo:
To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits.