847 resultados para Fat Mass Index


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An early and accurate recognition of success in treating obesity may increase the compliance of obese children and their families to intervention programs. This observational, prospective study aimed to evaluate the ability and the time to detect a significant reduction of adiposity estimated by body mass index (BMI), percentage of fat mass (%FM), and fat mass index (FMI) during weight management in prepubertal obese children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To determine reference values for fat-free mass index (FFMI) and fat mass index (FMI) in a large Caucasian group of apparently healthy subjects, as a function of age and gender and to develop percentile distribution for these two parameters. DESIGN: Cross-sectional study in which bioelectrical impedance analysis (50 kHz) was measured (using tetrapolar electrodes and cross-validated formulae by dual-energy X-ray absorptiometry in order to calculate FFMI (fat-free mass/height squared) and FMI (fat mass/height squared). SUBJECTS: A total of 5635 apparently healthy adults from a mixed non-randomly selected Caucasian population in Switzerland (2986 men and 2649 women), varying in age from 24 to 98 y. RESULTS: The median FFMI (18-34 y) were 18.9 kg/m(2) in young males and 15.4 kg/m(2) in young females. No difference with age in males and a modest increase in females were observed. The median FMI was 4.0 kg/m(2) in males and 5.5 kg/m(2) in females. From young to elderly age categories, FMI progressively rose by an average of 55% in males and 62% in females, compared to an increase in body mass index (BMI) of 9 and 19% respectively. CONCLUSIONS: Reference intervals for FFMI and FMI could be of practical value for the clinical evaluation of a deficit in fat-free mass with or without excess fat mass (sarcopenic obesity) for a given age category, complementing the classical concept of body mass index (BMI) in a more qualitative manner. In contrast to BMI, similar reference ranges seems to be utilizable for FFMI with advancing age, in particular in men.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Low and high body mass index (BMI) values have been shown to increase health risks and mortality and result in variations in fat-free mass (FFM) and body fat mass (BF). Currently, there are no published ranges for a fat-free mass index (FFMI; kg/m(2)), a body fat mass index (BFMI; kg/m(2)), and percentage of body fat (%BF). The purpose of this population study was to determine predicted FFMI and BFMI values in subjects with low, normal, overweight, and obese BMI. METHODS: FFM and BF were determined in 2986 healthy white men and 2649 white women, age 15 to 98 y, by a previously validated 50-kHz bioelectrical impedance analysis equation. FFMI, BFMI, and %BF were calculated. RESULTS: FFMI values were 16.7 to 19.8 kg/m(2) for men and 14.6 to 16.8 kg/m(2) for women within the normal BMI ranges. BFMI values were 1.8 to 5.2 kg/m(2) for men and 3.9 to 8.2 kg/m(2) for women within the normal BMI ranges. BFMI values were 8.3 and 11.8 kg/m(2) in men and women, respectively, for obese BMI (>30 kg/m(2)). Normal ranges for %BF were 13.4 to 21.7 and 24.6 to 33.2 for men and women, respectively. CONCLUSION: BMI alone cannot provide information about the respective contribution of FFM or fat mass to body weight. This study presents FFMI and BFMI values that correspond to low, normal, overweight, and obese BMIs. FFMI and BFMI provide information about body compartments, regardless of height.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the prevalence of low fat-free mass index (FFMI) and high and very high body fat mass index (BFMI) after lung transplantation (LTR). A total of 37 LTR patients were assessed prior to and at 1 month, 1 year and 2 years for FFM and compared to 37 matched volunteers (VOL). FFM was calculated by the Geneva equation and normalized for height (kg/m(2)). Subjects were classified as FFMI "low", <or=17.4 in men and <or=15.0 in women; BFMI "high", 5.2-8.1 in men and 8.3-11.7 in women; or "very high" >8.2 kg/m(2) in men and >11.8 kg/m(2) in women. In 23 M/14 F, body mass index (BMI) was 22.3+/-4.4 and 20.1+/-4.9 kg/m(2), respectively. The prevalence of low FFMI was 80% at 1 month and 33% at 2 years after LTR. Prevalence of very high BFMI increased and was higher in patients than VOL after LTR. The prevalence of low FFMI was high prior to and remained important 2 years after LTR, whereas BFMI was lower prior to and higher 2 years after LTR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Body mass index does not discriminate body fat from fat-free mass or determine changes in these parameters with physical activity and aging. Body fat mass index (BFMI) and fat-free mass index (FFMI) permit comparisons of subjects with different heights. This study evaluated differences in body mass index, BFMI, and FFMI in physically active and sedentary subjects younger and older than 60 y and determined the association between physical activity, age, and body composition parameters in a healthy white population between ages 18 and 98 y. METHODS: Body fat and fat-free mass were determined in healthy white men (n = 3549) and women (n = 3184), between ages 18 and 98 y, by bioelectrical impedance analysis. BFMI and FFMI (kg/m2) were calculated. Physical activity was defined as at least 3 h/wk of endurance-type activity for at least 2 mo. RESULTS: Physically active as opposed to sedentary subjects were more likely to have a low BFMI (men: odds ratio [OR], 1.4; confidence interval [CI], 0.7-2.5; women: OR 1.9, CI 1.6-2.2) and less likely to have very high BFMI (men: OR, 0.2; CI, 0.1-0.2; women: OR, 0.1; CI, 0.02-0.2), low FFMI (men: OR, 0.5; CI, 0.3-0.9; women: OR, 0.7; CI, 0.6-0.9), or very high FFMI (men: OR, 0.6; CI, 0.4-0.8; women: OR, 0.7; CI, 0.5-1.0). Compared with subjects younger than 60 y, those older than 60 y were more like to have very high BFMI (men: OR, 6.5; CI, 4.5-9.3; women: OR, 14.0; CI, 9.6-20.5), and women 60 y and older were less likely to have a low BFMI (OR, 0.4; CI, 0.2-0.5). CONCLUSIONS: A clear association was found between low physical activity or age and height-normalized body composition parameters (BFMI and FFMI) derived from bioelectrical impedance analysis. Physically active subjects were more likely to have high or very high or low FFMI. Older subjects had higher body weights and BFMI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Although dual-energy X-ray absorptiometry (DEXA) is the preferred method to estimate adiposity, body mass index (BMI) is often used as a proxy. However, the ability of BMI to measure adiposity change among youth is poorly evidenced. This study explored which metrics of BMI change have the highest correlations with different metrics of DEXA change. METHODS: Data were from the Quebec Adipose and Lifestyle Investigation in Youth cohort, a prospective cohort of children (8-10 years at recruitment) from Québec, Canada (n=557). Height and weight were measured by trained nurses at baseline (2008) and follow-up (2010). Metrics of BMI change were raw (ΔBMIkg/m(2) ), adjusted for median BMI (ΔBMIpercentage) and age-sex-adjusted with the Centers for Disease Control and Prevention growth curves expressed as centiles (ΔBMIcentile) or z-scores (ΔBMIz-score). Metrics of DEXA change were raw (total fat mass; ΔFMkg), per cent (ΔFMpercentage), height-adjusted (fat mass index; ΔFMI) and age-sex-adjusted z-scores (ΔFMz-score). Spearman's rank correlations were derived. RESULTS: Correlations ranged from modest (0.60) to strong (0.86). ΔFMkg correlated most highly with ΔBMIkg/m(2) (r = 0.86), ΔFMI with ΔBMIkg/m(2) and ΔBMIpercentage (r = 0.83-0.84), ΔFMz-score with ΔBMIz-score (r = 0.78), and ΔFMpercentage with ΔBMIpercentage (r = 0.68). Correlations with ΔBMIcentile were consistently among the lowest. CONCLUSIONS: In 8-10-year-old children, absolute or per cent change in BMI is a good proxy for change in fat mass or FMI, and BMI z-score change is a good proxy for FM z-score change. However change in BMI centile and change in per cent fat mass perform less well and are not recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For percentage of body fat (%BF), there are no internationally accepted cutoffs. The primary function of body fat cutoffs should be to identify not only excessive body fatness, but also the increased risk of unhealthy outcomes, such as hypertension. The purpose of this study was to analyze the accuracy of different %BF and body mass index (BMI) cutoffs as screening measures for EBP in pediatric populations. It was a cross-sectional study with a sample of 358 male subjects from 8 to 18 years old. BP was measured by the oscilometric method, and body composition was measured by dual-energy X-ray absorptiometry (DXA). The accuracy of three reference tables used for body fat cutoffs was assessed. The three body fat reference tables were highly specific, but insensitive, for elevated BP screening. For elevated BP screening, all body fat cutoffs presented similar sensitivity (range=48.3-53.7%) and specificity (range=79.2-84.1%). The body fat cutoffs performed no better than BMI in screening of children and adolescents at risk of elevated BP (EBP). BMI seems a more attractive tool for this function, as it performed similarly and can be applied in large surveys and with lower costs. Hypertension Research (2011) 34, 963-967; doi:10.1038/hr.2011.61; published online 26 May 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Body mass index (BMI) is frequently related to percentage body fat. Nevertheless, the relationship between BMI and fat mass/height(2) (FM/H-2), theoretically, should be more appropriate. Aim: This study seeks to evaluate the relationship between BMI and both percentage body fat and FM/H-2 in a group of Chinese Australian females. Subjects and methods: Forty subjects took part in the study and all were Chinese females resident in Brisbane, Australia. Body mass index was calculated from height and weight. Percentage body fat and fat mass were calculated from measurements of total body water. Results: The use of BMI to predict FM/H-2 accounted for double the variance of that found when BMI was used to predict percentage body fat. Conclusions: As a consequence, it is possible that the use of BMI to predict FM/H-2 and not percentage body fat in the first instance may prove to be more useful in a number of adult populations. Nevertheless, with a relatively small sample size it is difficult, if not impossible, to test the developed equations on a validation group and further investigation into the findings described in this paper needs to be undertaken.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dairy foods comprise a range of products with varying nutritional content. The intake of dairy products (DPs) has been shown to have beneficial effects on body weight and body fat. This study aimed to examine the independent association between DP intake, body mass index (BMI), and percentage body fat (%BF) in adolescents. A cross-sectional, school-based study was conducted with 1,001 adolescents (418 boys), ages 15–18 years, from the Azorean Archipelago, Portugal. Anthropometric measurements were recorded (weight and height), and %BF was assessed using bioelectric impedance analysis. Adolescent food intake was measured using a self-administered, semiquantitative food frequency questionnaire. Data were analyzed separately for girls and boys, and separate multiple linear regression analysis was used to estimate the association between total DP, milk, yogurt, and cheese intake, BMI, and %BF, adjusting for potential confounders. For boys and girls, respectively, total DP consumption was 2.6 ± 1.9 and 2.9 ± 2.5 servings/day (P = 0.004), while milk consumption was 1.7 ± 1.4 and 2.0 ± 1.7 servings/day (P = 0.001), yogurt consumption was 0.5 ± 0.6 and 0.4 ± 0.7 servings/day (P = 0.247), and cheese consumption was 0.4 ± 0.6 and 0.5 ± 0.8 servings/day (P = 0.081). After adjusting for age, birth weight, energy intake, protein, total fat, sugar, dietary fiber, total calcium intake, low-energy reporters, parental education, pubertal stage, and physical activity, only milk intake was negatively associated with BMI and %BF in girls (respectively, girls: β = −0.167, P = 0.013; boys: β = −0.019, P = 0.824 and girls: β = −0.143, P = 0.030; boys: β = −0.051, P = 0.548). Conclusion: We found an inverse association between milk intake and both BMI and %BF only in girls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IMPORTANCE There is a high prevalence of obesity in psychiatric patients, possibly leading to metabolic complications and reducing life expectancy. The CREB-regulated transcription coactivator 1 (CRTC1) gene is involved in energy balance and obesity in animal models, but its role in human obesity is unknown. OBJECTIVE To determine whether polymorphisms within the CRTC1 gene are associated with adiposity markers in psychiatric patients and the general population. DESIGN, SETTING, AND PARTICIPANTS Retrospective and prospective data analysis and population-based samples at Lausanne and Geneva university hospitals in Switzerland and a private clinic in Lausanne, Switzerland. The effect of 3 CRTC1 polymorphisms on body mass index (BMI) and/or fat mass was investigated in a discovery cohort of psychiatric outpatients taking weight gain-inducing psychotropic drugs (sample 1, n = 152). The CRTC1 variant that was significantly associated with BMI and survived Bonferroni corrections for multiple comparison was then replicated in 2 independent psychiatric samples (sample 2, n = 174 and sample 3, n = 118) and 2 white population-based samples (sample 4, n = 5338 and sample 5, n = 123 865). INTERVENTION Noninterventional studies. MAIN OUTCOME AND MEASURE Difference in BMI and/or fat mass between CRTC1 genotype groups. RESULTS Among the CRTC1 variants tested in the first psychiatric sample, only rs3746266A>G was associated with BMI (Padjusted = .003). In the 3 psychiatric samples, carriers of the rs3746266 G allele had a lower BMI than noncarriers (AA genotype) (sample 1, P = .001; sample 2, P = .05; and sample 3, P = .0003). In the combined analysis, excluding patients taking other weight gain-inducing drugs, G allele carriers (n = 98) had a 1.81-kg/m2 lower BMI than noncarriers (n = 226; P < .0001). The strongest association was observed in women younger than 45 years, with a 3.87-kg/m2 lower BMI in G allele carriers (n = 25) compared with noncarriers (n = 48; P < .0001), explaining 9% of BMI variance. In the population-based samples, the T allele of rs6510997C>T (a proxy of the rs3746266 G allele; r2 = 0.7) was associated with lower BMI (sample 5, n = 123 865; P = .01) and fat mass (sample 4, n = 5338; P = .03). The strongest association with fat mass was observed in premenopausal women (n = 1192; P = .02). CONCLUSIONS AND RELEVANCE These findings suggest that CRTC1 contributes to the genetics of human obesity in psychiatric patients and the general population. Identification of high-risk subjects could contribute to a better individualization of the pharmacological treatment in psychiatry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IMPORTANCE: Depression and obesity are 2 prevalent disorders that have been repeatedly shown to be associated. However, the mechanisms and temporal sequence underlying this association are poorly understood. OBJECTIVE: To determine whether the subtypes of major depressive disorder (MDD; melancholic, atypical, combined, or unspecified) are predictive of adiposity in terms of the incidence of obesity and changes in body mass index (calculated as weight in kilograms divided by height in meters squared), waist circumference, and fat mass. DESIGN, SETTING, AND PARTICIPANTS: This prospective population-based cohort study, CoLaus (Cohorte Lausannoise)/PsyCoLaus (Psychiatric arm of the CoLaus Study), with 5.5 years of follow-up included 3054 randomly selected residents (mean age, 49.7 years; 53.1% were women) of the city of Lausanne, Switzerland (according to the civil register), aged 35 to 66 years in 2003, who accepted the physical and psychiatric baseline and physical follow-up evaluations. EXPOSURES: Depression subtypes according to the DSM-IV. Diagnostic criteria at baseline and follow-up, as well as sociodemographic characteristics, lifestyle (alcohol and tobacco use and physical activity), and medication, were elicited using the semistructured Diagnostic Interview for Genetic Studies. MAIN OUTCOMES AND MEASURES: Changes in body mass index, waist circumference, and fat mass during the follow-up period, in percentage of the baseline value, and the incidence of obesity during the follow-up period among nonobese participants at baseline. Weight, height, waist circumference, and body fat (bioimpedance) were measured at baseline and follow-up by trained field interviewers. RESULTS: Only participants with the atypical subtype of MDD at baseline revealed a higher increase in adiposity during follow-up than participants without MDD. The associations between this MDD subtype and body mass index (β = 3.19; 95% CI, 1.50-4.88), incidence of obesity (odds ratio, 3.75; 95% CI, 1.24-11.35), waist circumference in both sexes (β = 2.44; 95% CI, 0.21-4.66), and fat mass in men (β = 16.36; 95% CI, 4.81-27.92) remained significant after adjustments for a wide range of possible cofounding. CONCLUSIONS AND RELEVANCE: The atypical subtype of MDD is a strong predictor of obesity. This emphasizes the need to identify individuals with this subtype of MDD in both clinical and research settings. Therapeutic measures to diminish the consequences of increased appetite during depressive episodes with atypical features are advocated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FNDC5/irisin has been recently postulated as beneficial in the treatment of obesity and diabetes because it is induced in muscle by exercise, increasing energy expenditure. However, recent reports have shown that WAT also secretes irisin and that circulating irisin is elevated in obese subjects. The aim of this study was to evaluate irisin levels in conditions of extreme BMI and its correlation with basal metabolism and daily activity. The study involved 145 female patients, including 96 with extreme BMIs (30 anorexic (AN) and 66 obese (OB)) and 49 healthy normal weight (NW). The plasma irisin levels were significantly elevated in the OB patients compared with the AN and NW patients. Irisin also correlated positively with body weight, BMI, and fat mass. The OB patients exhibited the highest REE and higher daily physical activity compared with the AN patients but lower activity compared with the NW patients. The irisin levels were inversely correlated with daily physical activity and directly correlated with REE. Fat mass contributed to most of the variability of the irisin plasma levels independently of the other studied parameters. Conclusion. Irisin levels are influenced by energy expenditure independently of daily physical activity but fat mass is the main contributing factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the accuracy of skinfold thicknesses, BMI and waist circumference for the prediction of percentage body fat (PBF) in a representative sample of 372 Swiss children aged 6-13 years. PBF was measured using dual-energy X-ray absorptiometry. On the basis of a preliminary bootstrap selection of predictors, seven regression models were evaluated. All models included sex, age and pubertal stage plus one of the following predictors: (1) log-transformed triceps skinfold (logTSF); (2) logTSF and waist circumference; (3) log-transformed sum of triceps and subscapular skinfolds (logSF2); (4) log-transformed sum of triceps, biceps, subscapular and supra-iliac skinfolds (logSF4); (5) BMI; (6) waist circumference; (7) BMI and waist circumference. The adjusted determination coefficient (R² adj) and the root mean squared error (RMSE; kg) were calculated for each model. LogSF4 (R² adj 0.85; RMSE 2.35) and logSF2 (R² adj 0.82; RMSE 2.54) were similarly accurate at predicting PBF and superior to logTSF (R² adj 0.75; RMSE 3.02), logTSF combined with waist circumference (R² adj 0.78; RMSE 2.85), BMI (R² adj 0.62; RMSE 3.73), waist circumference (R² adj 0.58; RMSE 3.89), and BMI combined with waist circumference (R² adj 0.63; RMSE 3.66) (P < 0.001 for all values of R² adj). The finding that logSF4 was only modestly superior to logSF2 and that logTSF was better than BMI and waist circumference at predicting PBF has important implications for paediatric epidemiological studies aimed at disentangling the effect of body fat on health outcomes.