745 resultados para Fast-setting
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The large volume of traffic on the interstate system makes it difficult to make pavement repairs. The maintenance crew needs 4-5 hours to break out the concrete to be replaced and prepare the hole for placing new concrete. Because of this it is usually noon before the patch can be placed. Since it is desirable to remove the barricades before dark there are only 7-8 hours for the concrete to reach the required strength. There exists a need for a concrete that can reach the necessary strength (modulus of rupture = 500 psi) in 7-8 hours. The purpose of this study is to determine if type III cement and/or an accelerator can be used in an M-4 mix to yield a fast setting patch with very little shrinkage. It is recognized that calcium chloride is a corrosive material and may therefore have detrimental effects upon the reinforcing steel. The study of these effects, however, is beyond the scope of this investigation.
Resumo:
In this paper are described the results of a research project that had the objective of developing construction procedures for restoring load transfer in existing jointed concrete pavements and of evaluating the effectiveness of the restoration methods. A total of 28 test sections with various load transfer devices were placed. The devices include split pipe, figure eight, vee, double vee, and dowel bars. Patching materials used on the project included three types of fast-setting grouts, three brands of polymer concrete, and plain portland cement concrete. The number and spacing of the devices and dowel bars were also variables in the project. Dowel bars and double vee devices were used on the major portion of the project. Performance evaluations were based on deflection tests conducted with a 20,000-lb axle load. Horizontal joint movement measurements and visual observations were also made. The short-term performance data indicate good results with the dowel bar installations regardless of patching materials. The sections with split pipe, figure eight, and vee devices failed in bond during the first winter cycle. The results with the double vee sections indicate the importance of the patching material to the success or failure of the load transfer system: some sections are performing well and other sections are performing poorly with double vee devices. Horizontal joint movement measurements indicate that neither the dowel bars nor the double vee devices are restricting joint movement.
Resumo:
Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)
Resumo:
Geopolymers are cementing materials that depict a number of advantages compared to Portland cement. Contrary to the latter, geopolymers are synthesized at room temperature, thus significantly reducing the emission of CO2 to the atmosphere. Moreover, the composition and synthesis reactions can be tailored to adjust the setting time of the material as well as its compressive mechanical strength. It is then possible to produce geopolymeric cements with short setting times and high compressive strength, although relatively brittle. The objective of the present study was to produce and characterize composite materials by reinforcing fastsetting geopolymeric matrixes with polypropylene geosynthetics (geomats and geotextiles) in an attempt to improve the toughness and tensile strength of the cementing material. Geosynthetics have been increasingly used to reinforce engineering structures, providing higher strength and better toughness. In particular, polypropylene nonwoven and geomats depict other attractive properties such as low density, durability, impact absorption and resistance to abrasion. Fast-setting geopolymers were then synthesized and reinforced with polypropylene nonwoven and geomats. The mechanical strength of the materials, reinforced or not, was characterized. The results showed that relatively short setting times and adequate flowing behavior were achieved by adjusting the composition of the geopolymer. In addition, it is possible to improve the fracture resistance of geopolymeric cements by adding polypropylene geosynthetics. The best results were achieved by reinforcing geopolymer with polypropylene TNT
Resumo:
Natural cement was patented in 1796 but it didn’t arrive in Spain until 1835. No one knows exactly where the production started in Spain, because it emerged independently at the same time in many places. Most of these outbreaks are concentrated in the north and northwest of Spain: Basque Country (Zumaya and Rezola) and Catalonia (San Celoní and San Juan de las Abadesas).Natural cement was extensively used to decorate historical buildings during the nineteenth and beginning of twentieth century in Madrid. It was the building material which realised the architects and builders dreams of mass-produced cast elements in a wide variety of styles. Its arrival replaced traditional materials that were used previously (lime, gypsum and hydraulic limes). However, its use was not extended in time, and soon it was replaced by the use of artificial Portland cements. During 20th century this building material disappeared from use. What remains is it’s memory, in thousands and thousands of “stone witnesses” in our cities. Final properties of the cement largely depend on raw materials used and its combustion temperature. However, it was characterised by an easily implementation on facade masonry, fast-setting (about 15 minutes), good resistance , an agreeable structural consistency and colour.This article aims to show first steps, evolution and decay of Natural Cement Industry in Spain and its application in Madrid.
Resumo:
Abstract : Wastepaper sludge ash (WSA) is generated by a cogeneration station by burning wastepaper sludge. It mainly consists of amorphous aluminosilicate phase, anhydrite, gehlenite, calcite, lime, C2S, C3A, quartz, anorthite, traces of mayenite. Because of its free lime content (~10%), WSA suspension has a high pH (13). Previous researchers have found that the WSA composition has poor robustness and the variations lead to some unsoundness for Portland cement (PC) blended WSA concrete. This thesis focused on the use of WSA in different types of concrete mixes to avoid the deleterious effect of the expansion due to the WSA hydration. As a result, WSA were used in making alkali-activated materials (AAMs) as a precursor source and as a potential activator in consideration of its amorphous content and the high alkaline nature. Moreover, the autogenous shrinkage behavior of PC concrete at low w/b ratio was used in order to compensate the expansion effect due to WSA. The concrete properties as well as the volume change were investigated for the modified WSA blended concrete. The reaction mechanism and microstructure of newly formed binder were evaluated by X-ray diffraction (XRD), calorimetry, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). When WSA was used as precursor, the results showed incompatible reaction between WSA and alkaline solution. The mixtures were not workable and provided very low compressive strength no matter what kinds of chemical activators were used. This was due to the metallic aluminum in WSA, which releases abundant hydrogen gas when WSA reacts with strong alkaline solution. Besides, the results of this thesis showed that WSA can activate the glassy phase contained in slag, glass powder (GP) and class F fly ash (FFA) with an optimum blended ratio of 50:50. The WSA/slag (mass ratio of 50:50) mortar (w/b of 0.47) attained 46 MPa at 28 days without heat curing assistance. A significant fast setting was noticed for the WSA-activated binder due to the C3A phase, free lime and metallic aluminum contained in the WSA. Adding 5% of gypsum can delay the fast setting, but this greatly increased the potential risk of intern sulfate attack. The XRD, TGA and calorimetry analyses demonstrated the formation of ettringite, C-S-H, portlandite, hydrogarnet and calcium carboaluminate in the hydrated binder. The mechanical performance of different binder was closely related to the microstructure of corresponding binder which was proved by the SEM observation. The hydrated WSA/slag and WSA/FFA binder formed a C-A-S-H type of gel with lower Ca/Si ratio (0.47~1.6). A hybrid gel (i.e. C-N-A-S-H) was observed for the WSA/GP binder with a very low Ca/Si ratio (0.26) and Na/Si ratio (0.03). The SEM/EDX analyses displayed the formation of expansive gel (ettringite and thaumasite) in the gypsum added WSA/slag concrete. The gradual emission of hydrogen gas due to the reaction of WSA with alkaline environment significantly increased the porosity and degraded the microstructure of hydrated matrix after the setting. In the last phase of this research WSA-PC blended binder was tailored to form a high autogenous shrinkage concrete in order to compensate the initial expansion. Different binders were proportioned with PC, WSA, silica fume or slag. The microstructure and mechanical properties of concrete can be improved by decreasing w/b ratios and by incorporating silica fume or slag. The 28-day compressive strength of WSA-blended concrete was above 22 MPa and reached 45 MPa when silica fume was added. The PC concrete incorporating silica fume or slag tended to develop higher autogenous shrinkage at low w/b ratios, and thus the ternary binder with the addition of WSA inhibited the long term shrinkage due to the initial expansion property to WSA. In the restrained shrinkage test, the concrete ring incorporating the ternary binder (PC/WSA/slag) revealed negligible potential to cracking up to 96 days as a result of the offset effect by WSA expansion. The WSA blended regular concrete could be produced for potential applications with reduced expansion, good mechanical property and lower permeability.
Resumo:
Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)
Resumo:
Background: Formoterol is a fast-acting, long-acting beta-agonist. Its on-demand use by outpatients has been beneficial in controlling asthma. Objective: To evaluate the efficacy of formoterol as rescue medication for pediatric asthma exacerbation. Methods: A randomized, double-blind study was conducted on parallel groups involving 79 pediatric patients (mean [SD] age, 9.92 [2.5] years) with mild to moderate asthma exacerbations. They were treated with up to 3 doses of formoterol aerolizer, 12 mu g, or terbutaline Turbuhaler, 0.5 mg (dry powder inhalers). Respiratory rate, clinical score, pulse oximetry, and spirometry were analyzed at baseline and 15 minutes after administration of each bronchodilator dose. All the patients received oral prednisolone, 1 mg/kg, at study entry, followed by a single daily dose for 4 days. Forty-one patients were treated with formoterol and 38 with terbutaline. The groups were comparable in age and in severity of asthma exacerbation. Results: Both treatments resulted in similar clinical and functional improvement; 37 patients (47%) required 1 bronchodilator dose. Increases of 19.5% and 1.5.3% occurred in forced expiratory volume in 1 second in the formoterol and terbutaline groups, respectively. Therapeutic failures occurred in 2 patients. No adverse effects were observed. At 1-week follow-up, patients were stable, with pulmonary function close to normal. Conclusion: Formoterol therapy was at least as effective as terbutaline therapy in children and adolescents with mild and moderate asthma exacerbations. Ann Allergy Asthma Immunol. 2009; 103:248-253.
Resumo:
Quantitative analysis of cine cardiac magnetic resonance (CMR) images for the assessment of global left ventricular morphology and function remains a routine task in clinical cardiology practice. To date, this process requires user interaction and therefore prolongs the examination (i.e. cost) and introduces observer variability. In this study, we sought to validate the feasibility, accuracy, and time efficiency of a novel framework for automatic quantification of left ventricular global function in a clinical setting.
Resumo:
Chrysonilia sitophila is a common mould in cork industry and has been identified as a cause of IgE sensitization and occupational asthma. This fungal species have a fast growth rate that may inhibit others species’ growth causing underestimated data from characterization of occupational fungal exposure. Aiming to ascertain occupational exposure to fungi in cork industry, were analyzed papers from 2000 about the best air sampling method, to obtain quantification and identification of all airborne culturable fungi, besides the ones that have fast-growing rates. Impaction method don’t allows the collection of a representative air volume, because even with some media that restricts the growth of the colonies, in environments with higher fungal load, such as cork industry, the counting of the colonies is very difficult. Otherwise, impinger method permits the collection of a representative air volume, since we can make dilution of the collected volume. Besides culture methods that allows fungal identification trough macro- and micro-morphology, growth features, thermotolerance and ecological data, we can apply molecular biology with the impinger method, to detect the presence of non-viable particles and potential mycotoxin producers’ strains, and also to detect mycotoxins presence with ELISA or HPLC. Selection of the best air sampling method in each setting is crucial to achieve characterization of occupational exposure to fungi. Information about the prevalent fungal species in each setting and also the eventual fungal load it’s needed for a criterious selection.
Resumo:
In order to evaluate the predictive value of acid fast bacilii (AFB) smear for the diagnosis of Mycobacterium tuberculosis in respiratory specimens in a setting with a high prevalence of Aids and an unknown prevalence of nontuberculous mycobacteria (NTM), we retrospectively examined specimens cultured for mycobacteria between 1 September 1993 and 30 September 1994 and medical records of patients with positive culture in a General Hospital, Aids reference in Rio de Janeiro, Brazil. Seventy three per cent (1517/2077) of samples were respiratory specimens and mycobacteria were recovered from 20.6% (313/1517) of these. M. tuberculosis was identified in 94.2% (295/313) and NTM in 5.8% (18/313). The yield of positive AFB smear and of positive culture was 6.1% (93/1517) and 20.6% (313/1517), respectively. The positive predictive value (PPV) of AFB for M. tuberculosis was 98.4% in expectorated sputum and 96.4% in bronchoalveolar lavage. Forty four percent (130/295) of specimens with positive culture for M. tuberculosis and 66.7% (12/18) for NTM were from patients HIV positive. The conclusion was that in our study population, the PPV of AFB for M. tuberculosis in respiratory specimens was high and the prevalence of NTM was low despite the high prevalence of HIV positive.
Resumo:
The use of molecular tools for genotyping Mycobacterium tuberculosis isolates in epidemiological surveys in order to identify clustered and orphan strains requires faster response times than those offered by the reference method, IS6110 restriction fragment length polymorphism (RFLP) genotyping. A method based on PCR, the mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping technique, is an option for fast fingerprinting of M. tuberculosis, although precise evaluations of correlation between MIRU-VNTR and RFLP findings in population-based studies in different contexts are required before the methods are switched. In this study, we evaluated MIRU-VNTR genotyping (with a set of 15 loci [MIRU-15]) in parallel to RFLP genotyping in a 39-month universal population-based study in a challenging setting with a high proportion of immigrants. For 81.9% (281/343) of the M. tuberculosis isolates, both RFLP and MIRU-VNTR types were obtained. The percentages of clustered cases were 39.9% (112/281) and 43.1% (121/281) for RFLP and MIRU-15 analyses, and the numbers of clusters identified were 42 and 45, respectively. For 85.4% of the cases, the RFLP and MIRU-15 results were concordant, identifying the same cases as clustered and orphan (kappa, 0.7). However, for the remaining 14.6% of the cases, discrepancies were observed: 16 of the cases clustered by RFLP analysis were identified as orphan by MIRU-15 analysis, and 25 cases identified as orphan by RFLP analysis were clustered by MIRU-15 analysis. When discrepant cases showing subtle genotypic differences were tolerated, the discrepancies fell from 14.6% to 8.6%. Epidemiological links were found for 83.8% of the cases clustered by both RFLP and MIRU-15 analyses, whereas for the cases clustered by RFLP or MIRU-VNTR analysis alone, links were identified for only 30.8% or 38.9% of the cases, respectively. The latter group of cases mainly comprised isolates that could also have been clustered, if subtle genotypic differences had been tolerated. MIRU-15 genotyping seems to be a good alternative to RFLP genotyping for real-time interventional schemes. The correlation between MIRU-15 and IS6110 RFLP findings was reasonable, although some uncertainties as to the assignation of clusters by MIRU-15 analysis were identified.
Resumo:
The objective of the thesis is to structure and model the factors that contribute to and can be used in evaluating project success. The purpose of this thesis is to enhance the understanding of three research topics. The goal setting process, success evaluation and decision-making process are studied in the context of a project, business unitand its business environment. To achieve the objective three research questionsare posed. These are 1) how to set measurable project goals, 2) how to evaluateproject success and 3) how to affect project success with managerial decisions.The main theoretical contribution comes from deriving a synthesis of these research topics which have mostly been discussed apart from each other in prior research. The research strategy of the study has features from at least the constructive, nomothetical, and decision-oriented research approaches. This strategy guides the theoretical and empirical part of the study. Relevant concepts and a framework are composed on the basis of the prior research contributions within the problem area. A literature review is used to derive constructs of factors withinthe framework. They are related to project goal setting, success evaluation, and decision making. On the basis of this, the case study method is applied to complement the framework. The empirical data includes one product development program, three construction projects, as well as one organization development, hardware/software, and marketing project in their contexts. In two of the case studiesthe analytic hierarchy process is used to formulate a hierarchical model that returns a numerical evaluation of the degree of project success. It has its origin in the solution idea which in turn has its foundation in the notion of projectsuccess. The achieved results are condensed in the form of a process model thatintegrates project goal setting, success evaluation and decision making. The process of project goal setting is analysed as a part of an open system that includes a project, the business unit and its competitive environment. Four main constructs of factors are suggested. First, the project characteristics and requirements are clarified. The second and the third construct comprise the components of client/market segment attractiveness and sources of competitive advantage. Together they determine the competitive position of a business unit. Fourth, the relevant goals and the situation of a business unit are clarified to stress their contribution to the project goals. Empirical evidence is gained on the exploitation of increased knowledge and on the reaction to changes in the business environment during a project to ensure project success. The relevance of a successful project to a company or a business unit tends to increase the higher the reference level of project goals is set. However, normal performance or sometimes performance below this normal level is intentionally accepted. Success measures make project success quantifiable. There are result-oriented, process-oriented and resource-oriented success measures. The study also links result measurements to enablers that portray the key processes. The success measures can be classified into success domains determining the areas on which success is assessed. Empiricalevidence is gained on six success domains: strategy, project implementation, product, stakeholder relationships, learning situation and company functions. However, some project goals, like safety, can be assessed using success measures that belong to two success domains. For example a safety index is used for assessing occupational safety during a project, which is related to project implementation. Product safety requirements, in turn, are connected to the product characteristics and thus to the product-related success domain. Strategic success measures can be used to weave the project phases together. Empirical evidence on their static nature is gained. In order-oriented projects the project phases are oftencontractually divided into different suppliers or contractors. A project from the supplier's perspective can represent only a part of the ¿whole project¿ viewed from the client's perspective. Therefore static success measures are mostly used within the contractually agreed project scope and duration. Proof is also acquired on the dynamic use of operational success measures. They help to focus on the key issues during each project phase. Furthermore, it is shown that the original success domains and success measures, their weights and target values can change dynamically. New success measures can replace the old ones to correspond better with the emphasis of the particular project phase. This adjustment concentrates on the key decision milestones. As a conclusion, the study suggests a combination of static and dynamic success measures. Their linkage to an incentive system can make the project management proactive, enable fast feedback and enhancethe motivation of the personnel. It is argued that the sequence of effective decisions is closely linked to the dynamic control of project success. According to the used definition, effective decisions aim at adequate decision quality and decision implementation. The findings support that project managers construct and use a chain of key decision milestones to evaluate and affect success during aproject. These milestones can be seen as a part of the business processes. Different managers prioritise the key decision milestones to a varying degree. Divergent managerial perspectives, power, responsibilities and involvement during a project offer some explanation for this. Finally, the study introduces the use ofHard Gate and Soft Gate decision milestones. The managers may use the former milestones to provide decision support on result measurements and ad hoc critical conditions. In the latter milestones they may make intermediate success evaluation also on the basis of other types of success measures, like process and resource measures.
Resumo:
Given a large image set, in which very few images have labels, how to guess labels for the remaining majority? How to spot images that need brand new labels different from the predefined ones? How to summarize these data to route the user’s attention to what really matters? Here we answer all these questions. Specifically, we propose QuMinS, a fast, scalable solution to two problems: (i) Low-labor labeling (LLL) – given an image set, very few images have labels, find the most appropriate labels for the rest; and (ii) Mining and attention routing – in the same setting, find clusters, the top-'N IND.O' outlier images, and the 'N IND.R' images that best represent the data. Experiments on satellite images spanning up to 2.25 GB show that, contrasting to the state-of-the-art labeling techniques, QuMinS scales linearly on the data size, being up to 40 times faster than top competitors (GCap), still achieving better or equal accuracy, it spots images that potentially require unpredicted labels, and it works even with tiny initial label sets, i.e., nearly five examples. We also report a case study of our method’s practical usage to show that QuMinS is a viable tool for automatic coffee crop detection from remote sensing images.