896 resultados para Fast pyrolysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today the limitedness of fossil fuel resources is clearly realized. For this reason there is a strong focus throughout the world on shifting from fossil fuel based energy system to biofuel based energy system. In this respect Finland with its proven excellent forestry capabilities has a great potential to accomplish this goal. It is regarded that one of the most efficient ways of wood biomass utilization is to use it as a feedstock for fast pyrolysis process. By means of this process solid biomass is converted into liquid fuel called bio-oil which can be burnt at power plants, used for hydrogen generation through a catalytic steam reforming process and as a source of valuable chemical compounds. Nowadays different configurations of this process have found their applications in several pilot plants worldwide. However the circulating fluidized bed configuration is regarded as the one with the highest potential to be commercialized. In the current Master’s Thesis a feasibility study of circulating fluidized bed fast pyrolysis process utilizing Scots pine logs as a raw material was conducted. The production capacity of the process is 100 000 tonne/year of bio-oil. The feasibility study is divided into two phases: a process design phase and economic feasibility analysis phase. The process design phase consists of mass and heat balance calculations, equipment sizing, estimation of pressure drops in the pipelines and development of plant layout. This phase resulted in creation of process flow diagrams, equipment list and Microsoft Excel spreadsheet that calculates the process mass and heat balances depending on the bio-oil production capacity which can be set by a user. These documents are presented in the current report as appendices. In the economic feasibility analysis phase there were at first calculated investment and operating costs of the process. Then using these costs there was calculated the price of bio-oil which is required to reach the values of internal rate of return of 5%, 10%, 20%, 30%, 40%, and 50%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall objective of this work was to compare the effect of pre-treatment and catalysts on the quality of liquid products from fast pyrolysis of biomass. This study investigated the upgrading of bio-oil in terms of its quality as a bio-fuel and/or source of chemicals. Bio-oil used directly as a biofuel for heat or power needs to be improved particularly in terms of temperature sensitivity, oxygen content, chemical instability, solid content, and heating values. Chemicals produced from bio-oil need to be able to meet product specifications for market acceptability. There were two main objectives in this research. The first was to examine the influence of pre-treatment of biomass on the fast pyrolysis process and liquid quality. The relationship between the method of pre-treatment of biomass feedstock to fast pyrolysis oil quality was studied. The thermal decomposition behaviour of untreated and pretreated feedstocks was studied by using a TGA (thermogravimetric analysis) and a Py-GC/MS (pyroprobe-gas chromatography/mass spectrometry). Laboratory scale reactors (100g/h, 300g/h, 1kg/h) were used to process untreated and pretreated feedstocks by fast pyrolysis. The second objective was to study the influence of numerous catalysts on fast pyrolysis liquids from wheat straw. The first step applied analytical pyrolysis (Py-GC/MS) to determine which catalysts had an effect on fast pyrolysis liquid, in order to select catalysts for further laboratory fast pyrolysis. The effect of activation, temperature, and biomass pre-treatment on catalysts were also investigated. Laboratory experiments were also conducted using the existing 300g/h fluidised bed reactor system with a secondary catalytic fixed bed reactor. The screening of catalysts showed that CoMo was a highly active catalyst, which particularly reduced the higher molecular weight products of fast pyrolysis. From these screening tests, CoMo catalyst was selected for larger scale laboratory experiments. With reference to the effect of pre-treatment work on fast pyrolysis process, a significant effect occurred on the thermal decomposition of biomass, as well as the pyrolysis products composition, and the proportion of key components in bio-oil. Torrefaction proved to have a mild influence on pyrolysis products, when compared to aquathermolysis and steam pre-treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-tier study is presented in this thesis. The first involves the commissioning of an extant but at the time, unproven bubbling fluidised bed fast pyrolysis unit. The unit was designed for an intended nominal throughput of 300 g/h of biomass. The unit came complete with solids separation, pyrolysis vapour quenching and oil collection systems. Modifications were carried out on various sections of the system including the reactor heating, quenching and liquid collection systems. The modifications allowed for fast pyrolysis experiments to be carried out at the appropriate temperatures. Bio-oil was generated using conventional biomass feedstocks including Willow, beechwood, Pine and Miscanthus. Results from this phase of the research showed however, that although the rig was capable of processing biomass to bio-oil, it was characterised by low mass balance closures and recurrent operational problems. The problems included blockages, poor reactor hydrodynamics and reduced organic liquid yields. The less than optimal performance of individual sections, particularly the feed and reactor systems of the rig, culminated in a poor overall performance of the system. The second phase of this research involved the redesign of two key components of the unit. An alternative feeding system was commissioned for the unit. The feed system included an off the shelf gravimetric system for accurate metering and efficient delivery of biomass. Similarly, a new bubbling fluidised bed reactor with an intended nominal throughput of 500g/h of biomass was designed and constructed. The design leveraged on experience from the initial commissioning phase with proven kinetic and hydrodynamic studies. These units were commissioned as part of the optimisation phase of the study. Also as part of this study, two varieties each, of previously unreported feedstocks namely Jatropha curcas and Moringa olifiera oil seed press cakes were characterised to determine their suitability as feedstocks for liquid fuel production via fast pyrolysis. Consequently, the feedstocks were used for the production of pyrolysis liquids. The quality of the pyrolysis liquids from the feedstocks were then investigated via a number of analytical techniques. The oils from the press cakes showed high levels of stability and reduced pH values. The improvements to the design of the fast pyrolysis unit led to higher mass balance closures and increased organic liquid yields. The maximum liquid yield obtained from the press cakes was from African Jatropha press cake at 66 wt% on a dry basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fast pyrolysis liquid or bio-oil has been used in engines with limited success. It requires a pilot fuel and/or an additive for successful combustion and there are problems with materials and liquid properties. It is immiscible with all conventional hydrocarbon fuels. Biodiesel, a product of esterification of vegetable oil with an alcohol, is widely used as a renewable liquid fuel as an additive to diesel at up to 20%. There are however limits to its use in conventional engines due to poor low temperature performance and variability in quality from a variety of vegetable oil qualities and variety of esterification processes. Within the European Project Bioliquids-CHP - a joint project between the European Commission and Russia - a study was undertaken to develop small scale CHP units based on engines and microturbines fuelled with bioliquids from fast pyrolysis and methyl esters of vegetable oil. Blends of bio-oil and biodiesel were evaluated and tested to overcome some of the disadvantages of using either fuel by itself. An alcohol was used as the co-solvent in the form of ethanol, 1-butanol or 2-propanol. Visual inspection of the blend homogeneity after 48 h was used as an indicator of the product stability and the results were plotted in a three phase chart for each alcohol used. An accelerated stability test was performed on selected samples in order to predict its long term stability. We concluded that the type and quantity of alcohol is critical for the blend formation and stability. Using 1-butanol gave the widest selection of stable blends, followed by blends with 2-propanol and finally ethanol, thus 1-butanol blends accepted the largest proportion of bio-oil in the mixture. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cassava rhizome was catalytically pyrolysed at 500 °C using analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) in order to investigate the effect of catalysts on bio-oil properties. The catalysts studied were zeolite ZSM-5, two aluminosilicate mesoporous materials Al-MCM-41 and Al-MSU-F, and a proprietary commercial catalyst alumina-stabilised ceria MI-575. The influence of catalysts on pyrolysis products was observed through the yields of aromatic hydrocarbons, phenols, lignin-derived compounds, carbonyls, methanol and acetic acid. Results showed that all the catalysts produced aromatic hydrocarbons and reduced oxygenated lignin derivatives, thus indicating an improvement of bio-oil heating value and viscosity. Among the catalysts, ZSM-5 was the most active to all the changes in pyrolysis products. In addition, all the catalysts with the exception of MI-575 enhanced the formation of acetic acid. This is clearly a disadvantage with respect to the level of pH in the liquid bio-fuel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article deals with the CFD modelling of fast pyrolysis of biomass in an Entrained Flow Reactor (EFR). The Lagrangian approach is adopted for the particle tracking, while the flow of the inert gas is treated with the standard Eulerian method for gases. The model includes the thermal degradation of biomass to char with simultaneous evolution of gases and tars from a discrete biomass particle. The chemical reactions are represented using a two-stage, semi-global model. The radial distribution of the pyrolysis products is predicted as well as their effect on the particle properties. The convective heat transfer to the surface of the particle is computed using the Ranz-Marshall correlation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pyrolysis of a freely moving cellulosic particle inside a 41.7mgs -1 source continuously fed fluid bed reactor subjected to convective heat transfer is modelled. The Lagrangian approach is adopted for the particle tracking inside the reactor, while the flow of the inert gas is treated with the standard Eulerian method for gases. The model incorporates the thermal degradation of cellulose to char with simultaneous evolution of gases and vapours from discrete cellulosic particles. The reaction kinetics is represented according to the Broido–Shafizadeh scheme. The convective heat transfer to the surface of the particle is solved by two means, namely the Ranz–Marshall correlation and the limit case of infinitely fast external heat transfer rates. The results from both approaches are compared and discussed. The effect of the different heat transfer rates on the discrete phase trajectory is also considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluid–particle interaction inside a 150 g/h fluidised bed reactor is modelled. The biomass particle is injected into the fluidised bed and the heat, momentum and mass transport from the fluidising gas and fluidised sand is modelled. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Heat transfer from the bubbling bed to the discrete biomass particle, as well as biomass reaction kinetics are modelled according to the literature. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of user-defined function (UDF). The study completes the fast pyrolysis modelling in bubbling fluidised bed reactors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluid–particle interaction inside a 150 g/h fluidised bed reactor is modelled. The biomass particle is injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase, according to the literature. FLUENT 6.2 has been used as the modelling framework of the simulations with a completely revised drag model, in the form of user defined function (UDF), to calculate the forces exerted on the particle as well as its velocity components. 2-D and 3-D simulations are tested and compared. The study is the first part of a complete pyrolysis model in fluidised bed reactors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluid–particle interaction and the impact of shrinkage on pyrolysis of biomass inside a 150 g/h fluidised bed reactor is modelled. Two 500 View the MathML sourcem in diameter biomass particles are injected into the fluidised bed with different shrinkage conditions. The two different conditions consist of (1) shrinkage equal to the volume left by the solid devolatilization, and (2) shrinkage parameters equal to approximately half of particle volume. The effect of shrinkage is analysed in terms of heat and momentum transfer as well as product yields, pyrolysis time and particle size considering spherical geometries. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Heat transfer from the bubbling bed to the discrete biomass particle, as well as biomass reaction kinetics are modelled according to the literature. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of user defined function (UDF).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a comparison between the different drag models for granular flows developed in the literature and the effect of each one of them on the fast pyrolysis of wood. The process takes place on an 100 g/h lab scale bubbling fluidized bed reactor located at Aston University. FLUENT 6.3 is used as the modeling framework of the fluidized bed hydrodynamics, while the fast pyrolysis of the discrete wood particles is incorporated as an external user defined function (UDF) hooked to FLUENT’s main code structure. Three different drag models for granular flows are compared, namely the Gidaspow, Syamlal O’Brien, and Wen-Yu, already incorporated in FLUENT’s main code, and their impact on particle trajectory, heat transfer, degradation rate, product yields, and char residence time is quantified. The Eulerian approach is used to model the bubbling behavior of the sand, which is treated as a continuum. Biomass reaction kinetics is modeled according to the literature using a two-stage, semiglobal model that takes into account secondary reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to design, construct, test and operate a novel circulating fluid bed fast pyrolysis reactor system for production of liquids from biomass. The novelty lies in incorporating an integral char combustor to provide autothermal operation. A reactor design methodology was devised which correlated input parameters to process variables, namely temperature, heat transfer and gas/vapour residence time, for both the char combustor and biomass pyrolyser. From this methodology a CFB reactor was designed with integral char combustion for 10 kg/h biomass throughput. A full-scale cold model of the CFB unit was constructed and tested to derive suitable hydrodynamic relationships and performance constraints. Early difficulties encountered with poor solids circulation and inefficient product recovery were overcome by a series of modifications. A total of 11 runs in a pyrolysis mode were carried out with a maximum total liquids yield of 61.50% wt on a maf biomass basis, obtained at 500°C and with 0.46 s gas/vapour residence time. This could be improved by improved vapour recovery by direct quenching up to an anticipated 75 % wt on a moisture-and-ash-free biomass basis. The reactor provides a very high specific throughput of 1.12 - 1.48 kg/hm2 and the lowest gas-to-feed ratio of 1.3 - 1.9 kg gas/kg feed compared to other fast pyrolysis processes based on pneumatic reactors and has a good scale-up potential. These features should provide significant capital cost reduction. Results to date suggest that the process is limited by the extent of char combustion. Future work will address resizing of the char combustor to increase overall system capacity, improvement in solid separation and substantially better liquid recovery. Extended testing will provide better evaluation of steady state operation and provide data for process simulation and reactor modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to design, construct and commission a new ablative pyrolysis reactor and a high efficiency product collection system. The reactor was to have a nominal throughput of 10 kg/11r of dry biomass and be inherently scalable up to an industrial scale application of 10 tones/hr. The whole process consists of a bladed ablative pyrolysis reactor, two high efficiency cyclones for char removal and a disk and doughnut quench column combined with a wet walled electrostatic precipitator, which is directly mounted on top, for liquids collection. In order to aid design and scale-up calculations, detailed mathematical modelling was undertaken of the reaction system enabling sizes, efficiencies and operating conditions to be determined. Specifically, a modular approach was taken due to the iterative nature of some of the design methodologies, with the output from one module being the input to the next. Separate modules were developed for the determination of the biomass ablation rate, specification of the reactor capacity, cyclone design, quench column design and electrostatic precipitator design. These models enabled a rigorous design protocol to be developed capable of specifying the required reactor and product collection system size for specified biomass throughputs, operating conditions and collection efficiencies. The reactor proved capable of generating an ablation rate of 0.63 mm/s for pine wood at a temperature of 525 'DC with a relative velocity between the heated surface and reacting biomass particle of 12.1 m/s. The reactor achieved a maximum throughput of 2.3 kg/hr, which was the maximum the biomass feeder could supply. The reactor is capable of being operated at a far higher throughput but this would require a new feeder and drive motor to be purchased. Modelling showed that the reactor is capable of achieving a reactor throughput of approximately 30 kg/hr. This is an area that should be considered for the future as the reactor is currently operating well below its theoretical maximum. Calculations show that the current product collection system could operate efficiently up to a maximum feed rate of 10 kg/Fir, provided the inert gas supply was adjusted accordingly to keep the vapour residence time in the electrostatic precipitator above one second. Operation above 10 kg/hr would require some modifications to the product collection system. Eight experimental runs were documented and considered successful, more were attempted but due to equipment failure had to be abandoned. This does not detract from the fact that the reactor and product collection system design was extremely efficient. The maximum total liquid yield was 64.9 % liquid yields on a dry wood fed basis. It is considered that the liquid yield would have been higher had there been sufficient development time to overcome certain operational difficulties and if longer operating runs had been attempted to offset product losses occurring due to the difficulties in collecting all available product from a large scale collection unit. The liquids collection system was highly efficient and modeling determined a liquid collection efficiency of above 99% on a mass basis. This was validated due to the fact that a dry ice/acetone condenser and a cotton wool filter downstream of the collection unit enabled mass measurements of the amount of condensable product exiting the product collection unit. This showed that the collection efficiency was in excess of 99% on a mass basis.