881 resultados para Fast Computation
Resumo:
We present a new algorithm called TITANIC for computing concept lattices. It is based on data mining techniques for computing frequent itemsets. The algorithm is experimentally evaluated and compared with B. Ganter's Next-Closure algorithm.
Resumo:
A straightforward method is proposed for computing the magnetic field produced by a circular coil that contains a large number of turns wound onto a solenoid of rectangular cross section. The coil is thus approximated by a circular ring containing a continuous constant current density, which is very close to the real situation when sire of rectangular cross section is used. All that is required is to evaluate two functions, which are defined as integrals of periodic quantities; this is done accurately and efficiently using trapezoidal-rule quadrature. The solution can be obtained so rapidly that this procedure is ideally suited for use in stochastic optimization, An example is given, in which this approach is combined with a simulated annealing routine to optimize shielded profile coils for NMR.
Resumo:
In this work we introduce an analytical approach for the frequency warping transform. Criteria for the design of operators based on arbitrary warping maps are provided and an algorithm carrying out a fast computation is defined. Such operators can be used to shape the tiling of time-frequency plane in a flexible way. Moreover, they are designed to be inverted by the application of their adjoint operator. According to the proposed mathematical model, the frequency warping transform is computed by considering two additive operators: the first one represents its nonuniform Fourier transform approximation and the second one suppresses aliasing. The first operator is known to be analytically characterized and fast computable by various interpolation approaches. A factorization of the second operator is found for arbitrary shaped non-smooth warping maps. By properly truncating the operators involved in the factorization, the computation turns out to be fast without compromising accuracy.
Resumo:
One key issue in the simulation of bare electrodynamic tethers (EDTs) is the accurate and fast computation of the collected current, an ambient dependent operation necessary to determine the Lorentz force for each time step. This paper introduces a novel semianalytical solution that allows researchers to compute the current distribution along the tether efficient and effectively under orbital-motion-limited (OML) and beyond OML conditions, i.e., if tether radius is greater than a certain ambient dependent threshold. The method reduces the original boundary value problem to a couple of nonlinear equations. If certain dimensionless variables are used, the beyond OML effect just makes the tether characteristic length L ∗ larger and it is decoupled from the current determination problem. A validation of the results and a comparison of the performance in terms of the time consumed is provided, with respect to a previous ad hoc solution and a conventional shooting method.
Resumo:
The emphasis of this work is on the optimal design of MRI magnets with both superconducting coils and ferromagnetic rings. The work is directed to the automated design of MRI magnet systems containing superconducting wire and both `cold' and `warm' iron. Details of the optimization procedure are given and the results show combined superconducting and iron material MRI magnets with excellent field characteristics. Strong, homogeneous central magnetic fields are produced with little stray or external field leakage. The field calculations are performed using a semi-analytical method for both current coil and iron material sources. Design examples for symmetric, open and asymmetric clinical MRI magnets containing both superconducting coils and ferromagnetic material are presented.
Resumo:
Magnetic resonance imaging (MRI) magnets have very stringent constraints on the homogeneity of the static magnetic field that they generate over desired imaging regions. The magnet system also preferably generates very little stray field external to its structure, so that ease of siting and safety are assured. This work concentrates on deriving, means of rapidly computing the effect of 'cold' and 'warm' ferromagnetic material in or around the superconducting magnet system, so as to facilitate the automated design of hybrid material MR magnets. A complete scheme for the direct calculation of the spherical harmonics of the magnetic field generated by a circular ring of ferromagnetic material is derived under the conditions of arbitrary external magnetizing fields. The magnetic field produced by the superconducting coils in the system is computed using previously developed methods. The final, hybrid algorithm is fast enough for use in large-scale optimization methods. The resultant fields from a practical example of a 4 T, clinical MRI magnet containing both superconducting coils and magnetic material are presented.
Resumo:
This paper studies Optimal Intelligent Supervisory Control System (OISCS) model for the design of control systems which can work in the presence of cyber-physical elements with privacy protection. The development of such architecture has the possibility of providing new ways of integrated control into systems where large amounts of fast computation are not easily available, either due to limitations on power, physical size or choice of computing elements.
Resumo:
The aim of this study is to perform a thorough comparison of quantitative susceptibility mapping (QSM) techniques and their dependence on the assumptions made. The compared methodologies were: two iterative single orientation methodologies minimizing the l2, l1TV norm of the prior knowledge of the edges of the object, one over-determined multiple orientation method (COSMOS) and anewly proposed modulated closed-form solution (MCF). The performance of these methods was compared using a numerical phantom and in-vivo high resolution (0.65mm isotropic) brain data acquired at 7T using a new coil combination method. For all QSM methods, the relevant regularization and prior-knowledge parameters were systematically changed in order to evaluate the optimal reconstruction in the presence and absence of a ground truth. Additionally, the QSM contrast was compared to conventional gradient recalled echo (GRE) magnitude and R2* maps obtained from the same dataset. The QSM reconstruction results of the single orientation methods show comparable performance. The MCF method has the highest correlation (corrMCF=0.95, r(2)MCF =0.97) with the state of the art method (COSMOS) with additional advantage of extreme fast computation time. The l-curve method gave the visually most satisfactory balance between reduction of streaking artifacts and over-regularization with the latter being overemphasized when the using the COSMOS susceptibility maps as ground-truth. R2* and susceptibility maps, when calculated from the same datasets, although based on distinct features of the data, have a comparable ability to distinguish deep gray matter structures.
Resumo:
A workshop recently held at the Ecole Polytechnique Federale de Lausanne (EPFL, Switzerland) was dedicated to understanding the genetic basis of adaptive change, taking stock of the different approaches developed in theoretical population genetics and landscape genomics and bringing together knowledge accumulated in both research fields. Indeed, an important challenge in theoretical population genetics is to incorporate effects of demographic history and population structure. But important design problems (e.g. focus on populations as units, focus on hard selective sweeps, no hypothesis-based framework in the design of the statistical tests) reduce their capability of detecting adaptive genetic variation. In parallel, landscape genomics offers a solution to several of these problems and provides a number of advantages (e.g. fast computation, landscape heterogeneity integration). But the approach makes several implicit assumptions that should be carefully considered (e.g. selection has had enough time to create a functional relationship between the allele distribution and the environmental variable, or this functional relationship is assumed to be constant). To address the respective strengths and weaknesses mentioned above, the workshop brought together a panel of experts from both disciplines to present their work and discuss the relevance of combining these approaches, possibly resulting in a joint software solution in the future.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Os efeitos Delaware e Groningen são dois tipos de anomalia que afetam ferramentas de eletrodos para perfilagem de resistividade. Ambos os efeitos ocorrem quando há uma camada muito resistiva, como anidrita ou halita, acima do(s) reservatório(s), produzindo um gradiente de resistividade muito similar ao produzido por um contato óleo-água. Os erros de interpretação produzidos têm ocasionado prejuízos consideráveis à indústria de petróleo. A PETROBRÁS, em particular, tem enfrentado problemas ocasionados pelo efeito Groningen sobre perfis obtidos em bacias paleozóicas da região norte do Brasil. Neste trabalho adaptamos, com avanços, uma metodologia desenvolvida por LOVELL (1990), baseada na equação de Helmholtz para HΦ, para modelagem dos efeitos Delaware e Groningen. Solucionamos esta equação por elementos finitos triangulares e retangulares. O sistema linear gerado pelo método de elementos finitos é resolvido por gradiente bi-conjugado pré-condicionado, sendo este pré-condicionador obtido por decomposição LU (Low Up) da matriz de stiffness. As voltagens são calculadas por um algoritmo, mais preciso, recentemente desenvolvido. Os perfis são gerados por um novo algoritmo envolvendo uma sucessiva troca de resistividade de subdomínios. Este procedimento permite obter cada nova matriz de stiffness a partir da anterior pelo cálculo, muito mais rápido, da variação dessa matriz. Este método permite ainda, acelerar a solução iterativa pelo uso da solução na posição anterior da ferramenta. Finalmente geramos perfis sintéticos afetados por cada um dos efeitos para um modelo da ferramenta Dual Laterolog.
Resumo:
The Ph.D. thesis describes the simulations of different microwave links from the transmitter to the receiver intermediate-frequency ports, by means of a rigorous circuit-level nonlinear analysis approach coupled with the electromagnetic characterization of the transmitter and receiver front ends. This includes a full electromagnetic computation of the radiated far field which is used to establish the connection between transmitter and receiver. Digitally modulated radio-frequency drive is treated by a modulation-oriented harmonic-balance method based on Krylov-subspace model-order reduction to allow the handling of large-size front ends. Different examples of links have been presented: an End-to-End link simulated by making use of an artificial neural network model; the latter allows a fast computation of the link itself when driven by long sequences of the order of millions of samples. In this way a meaningful evaluation of such link performance aspects as the bit error rate becomes possible at the circuit level. Subsequently, a work focused on the co-simulation an entire link including a realistic simulation of the radio channel has been presented. The channel has been characterized by means of a deterministic approach, such as Ray Tracing technique. Then, a 2x2 multiple-input multiple-output antenna link has been simulated; in this work near-field and far-field coupling between radiating elements, as well as the environment factors, has been rigorously taken into account. Finally, within the scope to simulate an entire ultra-wideband link, the transmitting side of an ultrawideband link has been designed, and an interesting Front-End co-design technique application has been setup.
Resumo:
An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures.
Resumo:
Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification.
Resumo:
Methods of solving the neuro-electromagnetic inverse problem are examined and developed, with specific reference to the human visual cortex. The anatomy, physiology and function of the human visual system are first reviewed. Mechanisms by which the visual cortex gives rise to external electric and magnetic fields are then discussed, and the forward problem is described mathematically for the case of an isotropic, piecewise homogeneous volume conductor, and then for an anisotropic, concentric, spherical volume conductor. Methods of solving the inverse problem are reviewed, before a new technique is presented. This technique combines prior anatomical information gained from stereotaxic studies, with a probabilistic distributed-source algorithm to yield accurate, realistic inverse solutions. The solution accuracy is enhanced by using both visual evoked electric and magnetic responses simultaneously. The numerical algorithm is then modified to perform equivalent current dipole fitting and minimum norm estimation, and these three techniques are implemented on a transputer array for fast computation. Due to the linear nature of the techniques, they can be executed on up to 22 transputers with close to linear speedup. The latter part of the thesis describes the application of the inverse methods to the analysis of visual evoked electric and magnetic responses. The CIIm peak of the pattern onset evoked magnetic response is deduced to be a product of current flowing away from the surface areas 17, 18 and 19, while the pattern reversal P100m response originates in the same areas, but from oppositely directed current. Cortical retinotopy is examined using sectorial stimuli, the CI and CIm ;peaks of the pattern onset electric and magnetic responses are found to originate from areas V1 and V2 simultaneously, and they therefore do not conform to a simple cruciform model of primary visual cortex.