913 resultados para Farm Effluent
Resumo:
In recent years, freshwater fish farmers have come under increasing pressure from the Water Authorities to control the quality of their farm effluents. This project aimed to investigate methods of treating aquacultural effluent in an efficient and cost-effective manner, and to incorporate the knowledge gained into an Expert System which could then be used in an advice service to farmers. From the results of this research it was established that sedimentation and the use of low pollution diets are the only cost effective methods of controlling the quality of fish farm effluents. Settlement has been extensively investigated and it was found that the removal of suspended solids in a settlement pond is only likely to be effective if the inlet solids concentration is in excess of 8 mg/litre. The probability of good settlement can be enhanced by keeping the ratio of length/retention time (a form of mean fluid velocity) below 4.0 metres/minute. The removal of BOD requires inlet solids concentrations in excess of 20 mg/litre to be effective, and this is seldom attained on commercial fish farms. Settlement, generally, does not remove appreciable quantities of ammonia from effluents, but algae can absorb ammonia by nutrient uptake under certain conditions. The use of low pollution, high performance diets gives pollutant yields which are low when compared with published figures obtained by many previous workers. Two Expert Systems were constructed, both of which diagnose possible causes of poor effluent quality on fish farms and suggest solutions. The first system uses knowledge gained from a literature review and the second employs the knowledge obtained from this project's experimental work. Consent details for over 100 fish farms were obtained from the public registers kept by the Water Authorities. Large variations in policy from one Authority to the next were found. These data have been compiled in a computer file for ease of comparison.
Resumo:
Despite evidence linking shrimp farming to several cases of environmental degradation, there remains a lack of ecologically meaningful information about the impacts of effluent on receiving waters. The aim of this study was to determine the biological impact of shrimp farm effluent, and to compare and distinguish its impacts from treated sewage effluent. Analyses included standard water quality/sediment parameters, as well as biological indicators including tissue nitrogen (N) content, stable isotope ratio of nitrogen (delta N-15) and amino acid composition of inhabitant seagrasses, mangroves and macroalgae. The study area consisted of two tidal creeks, one receiving effluent from a sewage treatment plant and the other from an intensive shrimp farm. The creeks discharged into the western side of Moreton Bay, a sub-tropical coastal embayment on the east coast of Australia. Characterization of water quality revealed significant differences between the creeks, and with unimpacted eastern Moreton Bay. The sewage creek had higher concentrations of dissolved nutrients (predominantly NO3-/NO2- and PO43-, compared to NH4+ in the shrimp creek). In contrast, the shrimp creek was more turbid and had higher phytoplankton productivity. Beyond 750 m from the creek mouths, water quality parameters were indistinguishable from eastern Moreton Bay values. Biological indicators detected significant impacts up to 4 km beyond the creek mouths (reference site). Elevated plant delta N-15 values ranged from 10.4-19.6 parts per thousand at the site of sewage discharge to 2.9-4.5 parts per thousand at the reference site. The free amino acid concentration and composition of seagrass and macroalgae was used to distinguish between the uptake of sewage and shrimp derived N. Proline (seagrass) and serine (macroalgae) were high in sewage impacted plants and glutamine (seagrass) and alanine (macroalgae) were high in plants impacted by shrimp effluent. The delta N-15 isotopic signatures and free amino acid composition of inhabitant flora indicated that sewage N extended further from the creek mouths than shrimp N. The combination of physical/chemical and biological indicators used in this study was effective in distinguishing the composition and subsequent impacts of aquaculture and sewage effluent on the receiving waters. (C) 2001 Academic Press.
Resumo:
Effluent water from shrimp ponds typically contains elevated concentrations of dissolved nutrients and suspended particulates compared to influent water. Attempts to improve effluent water quality using filter feeding bivalves and macroalgae to reduce nutrients have previously been hampered by the high concentration of clay particles typically found in untreated pond effluent. These particles inhibit feeding in bivalves and reduce photosynthesis in macroalgae by increasing effluent turbidity. In a small-scale laboratory study, the effectiveness of a three-stage effluent treatment system was investigated. In the first stage, reduction in particle concentration occurred through natural sedimentation. In the second stage, filtration by the Sydney rock oyster, Saccostrea commercialis (Iredale and Roughley), further reduced the concentration of suspended particulates, including inorganic particles, phytoplankton, bacteria, and their associated nutrients. In the final stage, the macroalga, Gracilaria edulis (Gmelin) Silva, absorbed dissolved nutrients. Pond effluent was collected from a commercial shrimp farm, taken to an indoor culture facility and was left to settle for 24 h. Subsamples of water were then transferred into laboratory tanks stocked with oysters and maintained for 24 h, and then transferred to tanks containing macroalgae for another 24 h. Total suspended solid (TSS), chlorophyll a, total nitrogen (N), total phosphorus (P), NH4+, NO3-, and PO43-, and bacterial numbers were compared before and after each treatment at: 0 h (initial); 24 h (after sedimentation); 48 h (after oyster filtration); 72 h (after macroalgal absorption). The combined effect of the sequential treatments resulted in significant reductions in the concentrations of all parameters measured. High rates of nutrient regeneration were observed in the control tanks, which did not contain oysters or macroalgae. Conversely, significant reductions in nutrients and suspended particulates after sedimentation and biological treatment were observed. Overall, improvements in water quality (final percentage of the initial concentration) were as follows: TSS (12%); total N (28%); total P (14%); NH4+ (76%); NO3- (30%); PO43-(35%); bacteria (30%); and chlorophyll a (0.7%). Despite the probability of considerable differences in sedimentation, filtration and nutrient uptake rates when scaled to farm size, these results demonstrate that integrated treatment has the potential to significantly improve water quality of shrimp farm effluent. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Effluent from a land based shrimp farm was detected in a receiving creek as changes in physical, chemical and biological parameters. The extent and severity of these changes depended on farm operations. This assessment was conducted at three different stages of shrimp-pond maturity, including (1) when the ponds were empty, (2) full and (3) being harvested. Methods for assessing farm effluent in receiving waters included physical/chemical analyses of the water column, phytoplankton bioassays and nitrogen isotope signatures of marine flora. Comparisons were made with an adjacent creek that served as the farms intake creek and did not directly receive effluent. Physical/chemical parameters identified distinct changes in the receiving creek with respect to farm operations. Elevated water column NH4+ (18.5+/-8.0 muM) and chlorophyll a concentrations (5.5+/-1.9 mug/l) were measured when the farm was in operation, in contrast to when the farm was inactive (1.3+/-0.3 muM and 1.2+/-0.6 mug/l, respectively). At all times, physically chemical parameters at the mouth of the effluent creek, were equivalent to control values, indicating effluent was contained within the effluent-receiving creek. However, elevated delta(15)N signatures of mangroves (up to similar to8parts per thousand) and macroalgae (up to similar to5parts per thousand) indicated a broader influence of shrimp farm effluent, extending to the lower regions of the farms intake creek. Bioassays at upstream sites close to the location of farm effluent discharge indicated that phytoplankton at these sites did not respond to further nutrient additions, however downstream sites showed large growth responses. This suggested that further nutrient loading from the shrimp farm, resulting in greater nutrient dispersal, will increase the extent of phytoplankton blooms downstream from the site of effluent discharge. When shrimp ponds were empty water quality in the effluent and intake creeks was comparable. This indicated that observed elevated nutrient and phytoplankton concentrations were directly attributable to farm operations. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
One of the key environmental concerns about shrimp farming is the discharge of waters with high levels of nutrients and suspended solids into adjacent waterways. In this paper we synthesize the results of our multidisciplinary research linking ecological processes in intensive shrimp ponds with their downstream impacts in tidal, mangrove-lined creeks. The incorporation of process measurements and bioindicators, in addition to water quality measurements, improved our understanding of the effect of shrimp farm discharges on the ecological health of the receiving water bodies. Changes in water quality parameters were an oversimplification of the ecological effects of water discharges, and use of key measures including primary production rates, phytoplankton responses to nutrients, community shifts in zooplankton and delta(15)N ratios in marine plants have the potential to provide more integrated and robust measures. Ultimately, reduction in nutrient discharges is most likely to ensure the future sustainability of the industry. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The amounts of farm dairy effluent stored in ponds and irrigated to land have steadily increased with the steady growth of New Zealand's dairy industry. About 80% of dairy farms now operate with effluent storage ponds allowing deferred irrigation. These storage and irrigation practices cause emissions of greenhouse gases (GHG) and ammonia. The current knowledge of the processes causing these emissions and the amounts emitted is reviewed here. Methane emissions from ponds are the largest contributor to the total GHG emissions from effluent in managed manure systems in New Zealand. Nitrous oxide emissions from anaerobic ponds are negligible, while ammonia emissions vary widely between different studies, probably because they depend strongly on pH and manure composition. The second-largest contribution to GHG emissions from farm dairy effluent comes from nitrous oxide emissions from land application. Ammonia emissions from land application of effluent in New Zealand were found to be less than those reported elsewhere from the application of slurries. Recent studies have suggested that New Zealand's current GHG inventory method to estimate methane emissions from effluent ponds should be revised. The increasing importance of emissions from ponds, while being a challenge for the inventory, also provides an opportunity to achieve mitigation of emissions due to the confined location of where these emissions occur. © 2015 © 2015 The Royal Society of New Zealand.
Resumo:
Current shrimp pond management practices generally result in elevated concentrations of nutrients, suspended solids, bacteria and phytoplankton compared with the influent water. Concerns about adverse environmental impacts caused by discharging pond effluent directly into adjacent waterways have prompted the search for cost-effective methods of effluent treatment. One potential method of effluent treatment is the use of ponds or raceways stocked with plants or animals that act as natural biofilters by removing waste nutrients. In addition to improving effluent water quality prior to discharge, the use of natural biofilters provides a method for capturing otherwise wasted nutrients. This study examined the potential of the native oyster, Saccostrea commercialis (Iredale and Roughley) and macroalgae, Gracilaria edulis (Gmelin) Silva to improve effluent water quality from a commercial Penaeus japonicus (Bate) shrimp farm, A system of raceways was constructed to permit recirculation of the effluent through the oysters to maximize the filtration of bacteria, phytoplankton and total suspended solids. A series of experiments was conducted to test the ability of oysters and macroalgae to improve effluent water quality in a flow-through system compared with a recirculating system. In the flow-through system, oysters reduced the concentration of bacteria to 35% of the initial concentration, chlorophyll a to 39%, total particulates (2.28-35.2 mum) to 29%, total nitrogen to 66% and total phosphorus to 56%. Under the recirculating flow regime, the ability of the oysters to improve water quality was significantly enhanced. After four circuits, total bacterial numbers were reduced to 12%, chlorophyll a to 4%, and total suspended solids to 16%. Efforts to increase biofiltration by adding additional layers of oyster trays and macroalgae-filled mesh bags resulted in fouling of the lower layers causing the death of oysters and senescence of macroalgae. Supplementary laboratory experiments were designed to examine the effects of high effluent concentrations of suspended particulates on the growth and condition of oysters and macroalgae. The results demonstrated that high concentrations of particulates inhibited growth and reduced the condition of oysters and macroalgae. Allowing the effluent to settle before biofiltration improved growth and reduced signs of stress in the oysters and macroalgae. A settling time of 6 h reduced particulates to a level that prevented fouling of the oysters and macroalgae.
Resumo:
A survey was carried out on 55 commercial dairy farms located in the South of Chile during 1995-97. A questionnaire was developed to obtain informed estimates of dairy effluent management on those farms. Information was analysed on an annual basis using a computer spreadsheet linking all the parameters surveyed. In addition, slurry samples were taken for analysis of dry matter content (DM). Herd size varied between 50 and 800 cows per farm. A large proportion of the total volume of effluents produced came from rainfall (46%), dirty water accounted for 29% with only 25% from cow's faeces and urine. The large volume of effluents produced resulted in a reduced storage capacity (on average of 2 months) or more frequent and higher application rates to the field. Only 37% of the farmers knew the application rates of manure and there was a wide range in the quantity used per year (12 m(3)/ha to 300 m(3)/ha). Dairy effluents were applied mainly on grass (71%) throughout the year but, mostly concentrated during the winter and spring time using only surface irrigation system. The total solids contents of effluents was very low, with 62% of the samples being <4% DM. This reflected the large volumes of clean water that the storage tanks received. The information collected has identified problems in effluent management in Chilean dairy farms where research and technology transfer will be necessary to avoid pollution problems.
Resumo:
Out-wintering pads offer a reduced cost system for wintering cattle, minimising damage to pasture, providing animal welfare and production benefits, and generate, potentially, a more manageable effluent and lower ammonia emissions. The objectives of the present study were (i) to contribute to improved understanding of the factors impacting on effluent quality, ammonia emissions and animal welfare via observations on four farm-based out-wintering pads (ComOWPs) in England, Wales and Ireland and more detailed studies undertaken on four experimental OWPs (ExpOWPs) constructed at Rothamsted Research North Wyke, Devon, England and (ii) to corroborate the effluent quality data from both the ComOWPs and the ExpOWPs, with findings in the literature. Woodchip size, feeding management and area allowance were the treatment factors applied on the ExpOWPs. These three factors were randomised across the four ExpOWPs, over four 6–7 week periods. Effluent quality from the ExpOWPs was sampled frequently in a flow proportional way and analysed for total N (TN); total P (TP); total solids (TS); ammonium-N (NH4+-N); nitrate-N (NO3−-N). Beef cattle were periodically weighed for determination of live weight gain (LWG). An approximate nitrogen balance was calculated as a means of understanding its partitioning and fate during and after the ExpOWPs use. Effluent quality from the ComOWPs was sampled frequently, also in a flow-proportional way, and analysed for TN, TP, TS, NH4+-N, NO3−-N, total K and COD. Effluent quality data from the ExpOWPs showed no significant differences (P > 0.05) between treatments, with average concentrations of 1095 mg l−1, and 806 mg l−1, for TN and NH4+-N, respectively. Average effluent concentrations from the ComOWPs were 356 mg l−1 TN and 124 mg l−1 NH4+-N. Ammonia emissions from the ExpOWPs showed no significant differences (P > 0.05) between the treatments, with average mean emission rates of 2.5 g m−2 d−1 NH3-N, respectively. A positive correlation was established between NH3-N emission rate and wind speed. Emission rates from the ComOWPs ranged from 0.7 to 1.6 g m−2 d−1 NH3-N. Average daily LWG on the ExpOWPs was 1.33 kg steer−1 d−1. The effluent from both the ComOWPs and ExpOWPs were more similar with dirty water and of consistently lower strength than beef cattle slurry, as supported by findings in the literature, and therefore, it is suggested to be subject to the regulatory requirements of dirty water rather than slurry.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Segments of the canine internal mammary artery (35 mm in length) were suspended in vitro in an organ chamber containing physiological salt solution (95% O(2)/5% CO(2), pH = 7.4, 37 degrees C). Segments were individually cannulated and perfused at 5 ml/minute using a roller pump. Vasorelaxant activity of the effluent from the perfused internal mammary arteries was bioassayed by measuring the decrease in tension induced by the effluent of the coronary artery endothelium-free ring which had been contracted with prostaglandin F(2 alpha) (2 x 10(-6) M). Intraluminal perfusion of adenosine diphosphate (10(-5) M) induced significant increase in relaxant activity in the effluent from the perfused blood vessel. However, when adenosine diphosphate (10(-5) M) was added extraluminally to the internal mammary artery, no change in relaxant activity in the effluent was noted. In contrast, acetylcholine produced significant increase in the relaxant activity on the effluent of the perfused internal mammary artery with both intraluminal and extraluminal perfusion. The intraluminal and extraluminal release of endothelium-derived relaxing factor (EDRF) by acetylcholine (10(-5) M) can be inhibited by site-specific administration of atropine (10(-5) M). These experiments indicate that certain agonists can induce the release of EDRF only by binding to intravascular receptors while other agonists can induce endothelium-dependent vasodilatation by acting on neural side receptors.