964 resultados para Famatinian orogenic belt
Resumo:
New petrologic, thermobarometric and U-Pb monazite geochronologic information allowed to resolve the metamorphic evolution of a high temperature mid-crustal segment of an ancient subduction-related orogen. The EI Portezuelo Metamorphic-Igneous Complex, in the northern Sierras Pampeanas, is mainly composed of migmatites that evolved from amphibolite to granulite metamorphic facies, reaching thermal peak conditions of 670-820 degrees C and 4.5-5.3 kbar. The petrographic study combined with conventional and pseudosection thermobarometry led to deducing a short prograde metamorphic evolution within migmatite blocks. The garnet-absent migmatites represent amphibolite-facies rocks, whereas the cordierite-garnet-K-feldspar-sillimanite migmatites represent higher metamorphic grade rocks. U-Pb geochronology on monazite grains within leucosome record the time of migmatization between approximate to 477 and 470 Ma. Thus, the El Portezuelo Metamorphic-Igneous Complex is an example of exhumed Early Ordovician anatectic middle crust of the Famatinian mobile belt. Homogeneous exposure of similar paleo-depths throughout the Famatinian back-arc and isobaric cooling paths suggest slow exhumation and consequent longstanding crustal residence at high temperatures. High thermal gradients uniformly distributed in the Famatinian back-arc can be explained by shallow convection of a low-viscosity asthenosphere promoted by subducting-slab dehydration. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The variolitic andesite from the Susong County in the Dabie Mountains implies that it was erupted in water. The mineralogy of the varioles is primarily radiate plagioclase (albite sind oligoclase), with little pyroxene, hornblende and quartz (derived from alteration). The pyroxene, hornblende and quartz are in the interstices between plagiocalse. The matrix consists of glass, hornblende, chlorite, epidote and zoisite. It is clearly subjected an extensive alteration. The andesite has an uncommon chemical composition. The SiO2 content is about 56.8%, TiO2 = 0.9%, MgO = 6.4%, Fe2O3 (tot) = 6.7%similar to 7.6%, 100Mg/(Mg + Fe) = 64.1 similar to 66.2. Mg-# is significantly high. The andesite has high abundances of large-lithophile trace elements (e.g. K, Ba. Sr, LREE), e.g. La/Nb = 5.56 similar to 6.07, low abundances of high-strength-field elements (HFSE e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subduction-related magmas. In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a character of the continental margins. There has a strong punishment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)(N) is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)(N) = 28.63 similar to 36.74, (La/Y)(N) = 70.33 similar to 82.4. The elements Y and Yb are depleted greatly, Y<20
Resumo:
Mongolia occupies a central position within the eastern branch of the large accretionary Central Asian Orogenic Belt (CAOB) or Altaids. The present work aims to outline the geodynamic environment and possible evolution of this part of the eastern CAOB, predominantly from the Cambrian to the middle Palaeozoic. The investigation primarily focussed on zircon geochronology as well as whole-rock geochemical and Sm–Nd isotopic analyses for a variety of metaigneous rocks from the southern Hangay and Gobi-Altai regions in south-central Mongolia. The southern slope of the Hangay Mountains in central Mongolia exposes a large NWSE-trending middle Neoproterozoic ophiolitic complex (c. 650 Ma), which is tectonically integrated within an accretionary complex developed between the Precambrian Baydrag and Hangay crustal blocks. Formation of the entire accretionary system along the north-eastern margin of the Baydrag block mainly occurred during the early Cambrian, but convergence within this orogenic zone continued until the early Ordovician, because of on-going southward subduction-accretion of the Baydrag block. An important discovery is the identification of a late Mesoproterozoic to early Neoproterozoic belt within the northern Gobi-Altai that was reworked during the late Cambrian and throughout the late Ordovician/Devonian. Early Silurian low-grade mafic and felsic metavolcanic rocks from the northern Gobi-Altai display subduction-related geochemical features and highly heterogeneous Nd isotopic compositions, which suggest an origin at a mature active continental margin. Early Devonian protoliths of granodioritic and mafic gneisses from the southern Gobi-Altai display geochemical and Nd isotopic compositions compatible with derivation and evolution from predominantly juvenile crustal and mantel sources and these rocks may have been emplaced within the outboard portion of the late Ordovician/early Silurian active continental margin. Moreover, middle Devonian low-grade metavolcanic rocks from the southwestern Gobi-Altai yielded geochemical and Nd isotopic data consistent with emplacement in a transitional arc-backarc setting. The combined U–Pb zircon ages and geochemical data obtained from the Gobi-Altai region suggest that magmatism across an active continental margin migrated oceanwards through time by way of subduction zone retreat throughout the Devonian. Progressive extension of the continental margin was associated with the opening of a backarc basin and culminated in the late Devonian with the formation of a Japan-type arc front facing a southward open oceanic realm (present-day coordinates).
Resumo:
Detrital zircon and igneous zircon U-Pb ages are reported from Proterozoic metamorphic rocks in northern New Mexico. These data give new insight into the provenance and depositional age of a >3-km-thick metasedimentary succession and help resolve the timing of orogenesis within an area of overlapping accretionary orogens and thermal events related to the Proterozoic tectonic evolution of southwest Laurentia. Three samples from the Paleoproterozoic Vadito Group yield narrow, unimodal detrital zircon age spectra with peak ages near 1710 Ma. Igneous rocks that intrude the Vadito Group include the Cerro Alto metadacite, the Picuris Pueblo granite, and the Penasco quartz monzonite and yield crystallization ages of 1710 +/- 10 Ma, 1699 +/- 3 Ma, and 1450 +/- 10 Ma, respectively. Within the overlying Hondo Group, a metamorphosed tuff layer from the Pilar Formation yields an age of 1488 +/- 6 Ma and represents the first direct depositional age constraint on any part of the Proterozoic metasedimentary succession in northern New Mexico. Detrital zircon from the overlying Piedra Lumbre Formation yield a minimum age peak of 1475 Ma, and similar to 60 grains (similar to 25%) yield ages between 1500 Ma and 1600 Ma, possibly representing non-Laurentian detritus originating from Australia and/or Antarctica. Detrital zircons from the basal metaconglomerate and the middle quartzite member of the Marquenas Formation yield minimum age peaks of 1472 Ma and 1471 Ma, consistent with earlier results. We interpret the onset of ca. 1490-1450 Ma deposition followed by tectonic burial, regional Al2SiO5 triple-point metamorphism, and ductile deformation at depths of 12-18 km to reflect a Mesoproterozoic contractional orogenic event, possibly related to the final suturing of the Mazatzal crustal province to the southern margin of Laurentia. We propose to call this event the Picuris orogeny.
Resumo:
The Palu Metamorphic Complex (PMC) is exposed in a late Cenozoic orogenic belt in NW Sulawesi, Indonesia. It is a composite terrane comprising a gneiss unit of Gondwana origin, a schist unit composed of meta-sediments deposited along the SE Sundaland margin in the Late Cretaceous and Early Tertiary, and one or more slivers of amphibolite with oceanic crust characteristics. The gneiss unit forms part of the West Sulawesi block underlying the northern and central sections of the Western Sulawesi Province. The presence of Late Triassic granitoids and recycled Proterozoic zircons in this unit combined with its isotopic signature suggests that the West Sulawesi block has its origin in the New Guinea margin from which it rifted in the late Mesozoic. It docked with Sundaland sometime during the Late Cretaceous. U–Th–Pb dating results for monazite suggest that another continental fragment may have collided with the Sundaland margin in the earliest Miocene. High-pressure (HP) and ultrahigh-pressure (UHP) rocks (granulite, peridotite, eclogite) are found as tectonic slices within the PMC, mostly along the Palu–Koro Fault Zone, a major strike-slip fault that cuts the complex. Mineralogical and textural features suggest that some of these rocks resided at depths of 60–120 km during a part of their histories. Thermochronological data (U–Th–Pb zircon and 40Ar/39Ar) from the metamorphic rocks indicate a latest Miocene to mid-Pliocene metamorphic event, which was accompanied by widespread granitoid magmatism and took place in an extensional tectonic setting. It caused recrystallization of, and new overgrowths on, pre-existing zircon crystals, and produced andalusite–cordierite–sillimanite–staurolite assemblages in pelitic protoliths, indicating HT–LP (Buchan-type) metamorphism. The PMC was exhumed as a core complex at moderate rates (c. 0.7–1.0 mm/yr) accompanied by rapid cooling in the Plio-Pleistocene. Some of the UHP rocks were transported to the surface at significantly higher rates (⩾16 mm/yr). The results of our study do not support recent plate tectonic reconstructions that propose a NW Australia margin origin for the West Sulawesi block (e.g. Hall et al., 2009).
Resumo:
This study reviews the thermophysical properties of rocks and the lithosphere and describes a one dimensional thermal numeric model of hypothetical 20 km thick overthrust plate obtruded on to the Archeaen craton in the Svecofennian orogeny (1.92-1.77 Ga). The objective is to find out if the overthrust plate and its radiogenic heat sources were able to produce the thermal effects observed on the current erosion level of the Archaean craton. Heat transfer in lithosphere is assumed conductive, and advective heat transfer due to melting and melt transfer is supposed negligible. The study area is located in the Eastern Finland, approximately current Kainuu and Northern Karelia regions, east from the most active orogenic belt (Raahe-Ladoga zone), so that orogenic magmatism can be neglected. Physical parameters and boundary conditions for the model are from different earlier published sources: deep seismic profiles (rock variation in depth), laboratory measurements (heat production and conductivity of rocks), field measurements (heat flow densities), and pT(t) estimations from the Finnish precambrian to estimate the size and thickness of the sheet. Comparison of the modelling results to previous K-Ar datings and other pTt estimations show, that the effect of the overthrust sheet has been adequate (max. T 450°C at 4 kbar) to produce the K-Ar resetting ages measured from the Archaean bedrock at current erosion level. No other kind of thermal activation in lithosphere is required. Results show possibly very minor partial melting in upper middle crust underneath the overthrust sheet.
Resumo:
The geology and structure of two crustal scale shear zones were studied to understand the partitioning of strain within intracontinental orogenic belts. Movement histories and regional tectonic implications are deduced from observational data. The two widely separated study areas bear the imprint of intense Late Mesozoic through Middle Cenozoic tectonic activity. A regional transition from Late Cretaceous-Early Tertiary plutonism, metamorphism, and shortening strain to Middle Tertiary extension and magmatism is preserved in each area, with contrasting environments and mechanisms. Compressional phases of this tectonic history are better displayed in the Rand Mountains, whereas younger extensional structures dominate rock fabrics in the Magdalena area.
In the northwestern Mojave desert, the Rand Thrust Complex reveals a stack of four distinctive tectonic plates offset along the Garlock Fault. The lowermost plate, Rand Schist, is composed of greenschist facies metagraywacke, metachert, and metabasalt. Rand Schist is structurally overlain by Johannesburg Gneiss (= garnet-amphibolite grade orthogneisses, marbles and quartzites), which in turn is overlain by a Late Cretaceous hornblende-biotite granodiorite. Biotite granite forms the fourth and highest plate. Initial assembly of the tectonic stack involved a Late Cretaceous? south or southwest vergent overthrusting event in which Johannesburg Gneiss was imbricated and attenuated between Rand Schist and hornblende-biotite granodiorite. Thrusting postdated metamorphism and deformation of the lower two plates in separate environments. A post-kinematic stock, the Late Cretaceous Randsburg Granodiorite, intrudes deep levels of the complex and contains xenoliths of both Rand Schist and mylonitized Johannesburg? gneiss. Minimum shortening implied by the map patterns is 20 kilometers.
Some low angle faults of the Rand Thrust Complex formed or were reactivated between Late Cretaceous and Early Miocene time. South-southwest directed mylonites derived from Johannesburg Gneiss are commonly overprinted by less penetrative north-northeast vergent structures. Available kinematic information at shallower structural levels indicates that late disturbance(s) culminated in northward transport of the uppermost plate. Persistence of brittle fabrics along certain structural horizons suggests a possible association of late movement(s) with regionally known detachment faults. The four plates were juxtaposed and significant intraplate movements had ceased prior to Early Miocene emplacement of rhyolite porphyry dikes.
In the Magdalena region of north central Sonora, components of a pre-Middle Cretaceous stratigraphy are used as strain markers in tracking the evolution of a long lived orogenic belt. Important elements of the tectonic history include: (1) Compression during the Late Cretaceous and Early Tertiary, accompanied by plutonism, metamorphism, and ductile strain at depth, and thrust driven? syntectonic sedimentation at the surface. (2) Middle Tertiary transition to crustal extension, initially recorded by intrusion of leucogranites, inflation of the previously shortened middle and upper crustal section, and surface volcanism. (3) Gravity induced development of a normal sense ductile shear zone at mid crustal levels, with eventual detachment and southwestward displacement of the upper crustal stratigraphy by Early Miocene time.
Elucidation of the metamorphic core complex evolution just described was facilitated by fortuitous preservation of a unique assemblage of rocks and structures. The "type" stratigraphy utilized for regional correlation and strain analysis includes a Jurassic volcanic arc assemblage overlain by an Upper Jurassic-Lower Cretaceous quartz pebble conglomerate, in turn overlain by marine strata with fossiliferous Aptian-Albian limestones. The Jurassic strata, comprised of (a) rhyolite porphyries interstratified with quartz arenites, (b) rhyolite cobble conglomerate, and (c) intrusive granite porphyries, are known to rest on Precambrian basement north and east of the study area. The quartz pebble conglomerate is correlated with the Glance Conglomerate of southeastern Arizona and northeastern Sonora. The marine sequence represents part of an isolated arm? of the Bisbee Basin.
Crosscutting structural relationships between the pre-Middle Cretaceous supracrustal section, younger plutons, and deformational fabrics allow the tectonic sequence to be determined. Earliest phases of a Late Cretaceous-Early Tertiary orogeny are marked by emplacement of the 78 ± 3 Ma Guacomea Granodiorite (U/Pb zircon, Anderson et al., 1980) as a sill into deep levels of the layered Jurassic series. Subsequent regional metamorphism and ductile strain is recorded by a penetrative schistosity and lineation, and east-west trending folds. These fabrics are intruded by post-kinematic Early Tertiary? two mica granites. At shallower crustal levels, the orogeny is represented by north directed thrust faulting, formation of a large intermontane basin, and development of a pronounced unconformity. A second important phase of ductile strain followed Middle Tertiary? emplacement of leucogranites as sills and northwest trending dikes into intermediate levels of the deformed section (surficial volcanism was also active during this transitional period to regional extension). Gravitational instabilities resulting from crustal swelling via intrusion and thermal expansion led to development of a ductile shear zone within the stratigraphic horizon occupied by a laterally extensive leucogranite sill. With continued extension, upper crustal brittle normal faults (detachment faults) enhanced the uplift and tectonic denudation of this mylonite zone, ultimately resulting in southwestward displacement of the upper crustal stratigraphy.
Strains associated with the two ductile deformation events have been successfully partitioned through a multifaceted analysis. R_f/Ø measurements on various markers from the "type" stratigraphy allow a gradient representing cumulative strain since Middle Cretaceous time to be determined. From this gradient, noncoaxial strains accrued since emplacement of the leucogranites may be removed. Irrotational components of the postleucogranite strain are measured from quartz grain shapes in deformed granites; rotational components (shear strains) are determined from S-C fabrics and from restoration of rotated dike and vein networks. Structural observations and strain data are compatable with a deformation path of: (1) coaxial strain (pure shear?), followed by (2) injection of leucogranites as dikes (perpendicular to the minimum principle stress) and sills (parallel to the minimum principle stress), then (3) southwest directed simple shear. Modeling the late strain gradient as a simple shear zone permits a minimum displacement of 10 kilometers on the Magdalena mylonite zone/detachment fault system. Removal of the Middle Tertiary noncoaxial strains yields a residual (or pre-existing) strain gradient representative of the Late Cretaceous-Early Tertiary deformation. Several partially destrained cross sections, restored to the time of leucogranite emplacement, illustrate the idea that the upper plate of the core complex bas been detached from a region of significant topographic relief. 50% to 100% bulk extension across a 50 kilometer wide corridor is demonstrated.
Late Cenozoic tectonics of the Magdalena region are dominated by Basin and Range style faulting. Northeast and north-northwest trending high angle normal faults have interacted to extend the crust in an east-west direction. Net extension for this period is minor (10% to 15%) in comparison to the Middle Tertiary detachment related extensional episode.
Resumo:
O Orógeno Ribeira representa um cinturão de dobramentos e empurrões, gerado no Neoproterozóico/Cambriano, durante a Orogênese Brasiliana, na borda sul/sudeste do Cráton do São Francisco e compreende quatro terrenos tectono-estratigráficos: 1) o Terreno Ocidental, interpretado como resultado do retrabalhamento do paleocontinente São Francisco, é constituído de duas escamas de empurrão de escala crustal (Domínios Andrelândia e Juiz de Fora); 2) o Terreno Oriental representa uma outra microplaca e abriga o Arco Magmático Rio Negro; 3) o Terreno Paraíba do Sul, que constitui-se na escama superior deste segmento da faixa; e 4) o Terreno Cabo Frio, cuja docagem foi tardia, ocupa pequena área no litoral norte do estado do Rio de Janeiro. Em todos os diferentes compartimentos do segmento central da Faixa Ribeira podem ser identificadas três unidades tectono-estratigráficas: 1) unidades pré-1,8 Ga. (ortognaisses e ortogranulitos do embasamento); 2) rochas metassedimentares pós-1,8 Ga; e 3) granitóides/charnockitóides brasilianos. O Complexo Mantiqueira é composto por ortognaisses migmatíticos, tonalíticos a graníticos, e anfibolitos associados, constitui o embasamento pré-1,8 Ga das rochas da Megasseqüência Andrelândia no domínio homônimo do Terreno Ocidental. Foram integrados 68 dados litogeoquímicos dentre ortognaisses e metabasitos do Complexo Mantiqueira. As rochas dessa unidade pertencem a duas séries distintas: série calcioalcalina (rochas intermediárias a ácidas); e série transicional (rochas básicas, ora de afinidade toleítica, ora alcalina). Com base em critérios petrológicos, análise quantitativa e em valores [La/Yb]N, verificou-se que o Complexo Mantiqueira é bastante heterogêneo, incluindo diversos grupos petrogeneticamente distintos. Dentre as rochas da série transicional, foram identificados 2 conjuntos: 1) rochas basálticas toleiíticas, com [La/Yb]N entre 2,13 e 4,72 (fontes do tipo E-MORB e/ou intraplaca);e 2) rochas basálticas de afinidade alcalina, com [La/Yb]N entre 11,79 e 22,78. As rochas da série calciolacalina foram agrupadas em cinco diferentes conjuntos: 1) ortognaisses migmatíticos quartzo dioríticos a tonalíticos, com [La/Yb]N entre 11,37 e 38,26; 2) ortognaisses bandados de composição quarzto diorítica a granodiorítica, com [La/Yb]N entre 4,35 e 9,28; 3) ortognaisses homogênos de composição tonalítica a granítica, com [La/Yb]N entre 16,57 e 38,59; 4) leucognaisses brancos de composição tonalítica/trondhjemítica a granítica, com [La/Yb]N entre 46,69 e 65,06; e 5) ortognaisse róseo porfiroclástico de composição tonalítica a granítica, com [La/Yb]N entre 82,70 e 171,36. As análises geocronológicas U-Pb SHRIMP foram realizadas no Research School of Earth Science (ANU/Canberra/Austrália). Foram obtidas idades paleoproterozóicas para as rochas das duas séries identificadas, interpretadas como a idade de cristalização dos protólitos magmáticos desses gnaisses e metabasitos. Os resultados obtidos mostram uma variação de idades de cristalização de 2139 35 a 2143,4 9,4, para as rochas da série transicional, e de 2126,4 8 a 2204,5 6,7, para aquelas da série calcioalcalina. Dentre todas as amostras estudadas, apenas a amostra JF-CM-516IV forneceu dados discordantes de idades arqueanas (292916 Ma), interpretados como dados de herança. Contudo, evidências dessa herança semelhantes a esta são observadas em outras amostras. Ambas as séries também apresentaram idades de metamorfismo neoproterozóico, no intervalo de 548 17 Ma a 590,5 7,7 Ma que é consistente com o metamorfismo M1 (entre 550 e 590 Ma), contemporâneo à colisão entre os Terrenos Ocidental e Oriental do setor central da Faixa Ribeira (Heilbron, 1993 e Heilbron et al., 1995).
Resumo:
Heavy mineral assemblages, chemical compositions of diagnostic heavy minerals such as garnet and tourmaline, and U-Pb ages and Hf isotopic compositions of zircons are very effective means to determine sediment provenance. An integrated application of the above provides insight on the lithologies, crystallization ages and crustal formation ages of the parent magma of sediment source areas. As a result, the locations and characteristics of potential source areas can be constrained and contributions of different source regions may be evaluated. In addition, the study provides evidence for the magmatic and tectonic history of source areas using a novel approach. The heavy mineral assemblages, and chemical compositions of detrital garnets and tourmalines, U-Pb ages and Hf isotopic compositions of zircons for sand and loess samples deposited since the Last Glacial Maximum (LGM) from the Hulunbeier, Keerqin and Hunshandake sandlands were analyzed and compared to those of central-southern Mongolia, the central Tarim and surrounding potential source areas, the Central Asian Orogenic Belt (CAOB) and North China Craton (NCC). The following remarks on provenance and tectonic history can be made: 1. The source compositional characteristics of the Hulunbeier, Keerqin and Hunshandake sandlands are similar. They are derived from the CAOB and NCC whose contributions for the Keerqin and Hunshandake sandland are about 50%. For the Hulunbeier sandland it is somewhat less, about 40%. 2. Loesses around of the sandlands have the identical source signiture as the sands, implying that they are sorted by the same wind regime. 3. The source characteristics of the present and LGM sands are the same, providing direct evidence that the present sands originated from the reworking of LGM sands. 4. The provenance characteristics of the three sandlands differ from those of the Tarim. As a result, the possibility that the three eastern sandlands were sourced from the Taklimakan desert can be ruled out. 5. The source compositions of sand samples derived from the CAOB indicate that the occurrence of Archean and Paleoproterozoic metamorphic basement rocks is limited and continuous subduction-accretion events from the Neoproterozoic to the Mesozoic occurred. This implies that the CAOB is a orogenic collage belt similar to the present day southwest-Pacific, and formed by the amalgamation of small forearc and backarc ocean basins occurring between island arcs and microcontinents during continuous collision and accretion. The Hf isotopic signitures of detrital zircons indicate that large amounts of juvenile mantle materials were added to the CAOB crust during the Phanerozoic.
Resumo:
The West Shandong Uplift and its adjacent basins, with same evolutional history before Mesozoic, are an important basin-orogenic systems in North China. After late Mesozoic, tectonic differentiation between basin and orogenic belt gradually displayed in the study area. The Boxing sag is a part of Jiyang Depression near to West Shandong Uplift, in which the whole Mesozoic and Cenozoic strata are preserved. Based on the analysis of sedimentary records in the Boxing sag, the Cenozoic structural and sedimentary evolutions in Boxing Sag and its response to Western Shandong uplift are discussed in this dissertation. The main conclusions in this research are presented as follows. Based on Seismic and well logging profile interpretation, fault growth index, thickness difference between bottom wall and top wall and fault activity rate from Eocene to Pliocene are studied. Boxing sag had three main faults, NE, NW and NEE trending faults. Research shows that the activity of the NW trending fault in the Boxing sag became weaken from E1-2S4 to N2m gradually. The evolution of NE and the NEE trending fault can be divided into three episodes, from E1-2k to E2s4, from E2s3 to E3s1, from N2m to E3d. The analysis of Paleogene samples of heavy mineral assemblages shows that metamorphic rocks represented by garnet, intermediate-acid igneous rocks represented by the assemblage of apatite, zircon and tourmaline became less from E1-2k to N2g, and sedimentary rocks represented by the assemblage of pyrite, barite and limonite also became less. Intermediate-basic igneous rocks represented by the assemblage of leucoxene, rutile and ilmenite and metamorphic rocks represented by epidote became more and more. Electronic microprobe analysis shows that glaucophane and barroisite are existed in Kongdian Formation and the 4th member of Shahejie Formation, and they demonstrate that Western Shandong and Eastern Shandong are all the source regions of the Boxing Sag, and they also indicate that oceanic crust existed before the collision between the Yangtze and North China continent. The fact that Eastern Shandong is the source region of Boxing Sag also indicates that Western Shandong was not high enough to prevent sediment from Eastern Shandong at E1-2k and E2s4. The results of the dating of five detrital zircons of Boxing Sag show Kongdian Formation and the 4th member of Shahejie Formation have the age peaks of 2800Ma and 700-800. It means that Eastern Shandong is the source region of Boxing Sag at early Paleogene and Western Shandong is not high enough to prevent the sediment from Eastern Shandong. The ages of 160-180 and 220-260 Ma, which exist in the Guantao Formation and Paleogene, are common in Eastern Shandong and rare in Western Shandong,and it implied that Western Shandong is a low uplift at 24Ma. The Paleogene strata have almost same age groups, while the Guantao Formation has significant variations of age groups, and this indicates that Boxing Sag and Western Shandong uplift had taken place tremendous changes. The results of apatite fission track in Boxing sag show that three times uplifts happened at the source region at 60 Ma, 45Ma and 15Ma respectively, and the Boxing sag experienced two subsidences at 60Ma, 45Ma and one uplift at 20Ma.
Resumo:
The Huade Group, consisting of low-grade and un-metamorphosed sedimentary rocks with no volcanic interlayer, is located at the northern margin of the North China craton and adjoining the south part of the Central Asian Orogenic Belt. It is east to the Paleo- to Meso-Proterozoic Bayan Obo and Zhaertai-Langshan rifts and northwest to the Paleo- to Neo-proterozoic Yanshan aulacogen, in which the typical Changcheng, Jixian and Qingbaikou systems are developed. The Huade Group are mainly composed of pebbly sandstones, sandstones, greywackes,shales,calc-silicate rocks and limestones, partly undergoing low-grade metamorphism and being changed to meta-sandstones, schists, phyllites, slates and crystalline limestones or marbles. The stratigraphic sequences show several cycles of deposition. Each of them developed coarse clastic rocks – interbedded fine clastic rocks and pelites from bottom upward or from coarse clastic rocks to interbedded fine clastic rocks and pelites to carbonate rocks. The Tumen Group outcrop sporadically around or west to the Tanlu faults in western Shandong. They are mainly composed of pebbly sandstones, sandstones, shales and limestones. This thesis deals with the characteristics of petrology, geochemistry and sedimentary of the Huade Group and the Tumen Group, and discusses the LA-ICP-MS and SIMS U-Pb ages, Hf isotope and trace element composition of the detrital zircons from 5 meta-sandstone samples of the Huade Group and 3 sandstone samples of the Tumen Group. The age populations of the detrital zircons from the Huade Group are mainly ~2.5 Ga and ~1.85 Ga, and there are also minor peaks at ~2.0 Ga, ~1.92 Ga and ~1.73 Ga. Most of the detrital zircon grains of 2.47-2.57 Ga and a few of 1.63-2.03 Ga have Hf crust model ages of 2.7-3.0 Ga, and most of the detrital zircon grains of 1.63-2.03 Ga have Hf crust model ages of 2.35-2.7 Ga, with a peak at 2.54 Ga. The main age peaks of the detrital zircons from the Tumen Group are ~2.5 Ga、~1.85 Ga, 1.57 Ga, 1.5 Ga, 1.33 Ga and 1.2 Ga. Different samples from the Tumen Group have distinct Hf isotopic characteristics. Detrital zircon grains of ~2.52 Ga from one sandstone sample have 2.7-3.2 Ga Hf crust model ages, whereas zircon grains of 1.73-2.02 Ga and 2.31-2.68 Ga from another sample have Hf crust model ages of 2.95-3.55 Ga. Detrital zircon grains of Mesoproterozoic ages have Paleoproterozoic (1.7-2.25 Ga) crust model ages. Through detailed analyses of the detrital zircons from the Huade and Tumen Group and comparison with those from the sedimentary rocks of similar sedimentary ages, the thesis mainly reaches the following conclusions: 1. The youngest age peaks of the detrital zircons of 1.73 Ga constrains the sedimentary time of the Huade Group from late Paleoproterozoic to Mesoproterozoic. 2. The age peaks of detrital zircons of the Huade Group correspond to the significant Precambrian tectonic-thermal events of the North China craton. The basement of the North China craton is the main provenance of the Huade Group, of which the intermediate to high grade metamorphic sedimentary rocks are dominant and provide mainly 1.85-1.92 Ga sediments. 3. The Huade basin belongs to the North China craton and it is suggested that the northern boundary of the North China craton should be north to the Huade basin. 4. The stratigraphic characteristics indicate the Huade Group formed in a stable shallow-hypabyssal sedimentary basin. The rock association and sedimentary time of the Huade Group are similar to those of the Banyan Obo Group and the Zhaertai Group, and they commonly constitute late Paleoproterozoic to Mesoproterozoic continental margin basins along the northern margin of the North China craton. 5. The continental margin basins would have initiated coeval with the Yanshan and Xiong’er aulacogens. 6. The ages of the detrital zircons from the Tumen Group and the Penglai Group at Shandong peninsula and the Yushulazi Group at south Liaoning are similar, so their sedimentary time is suggested to be Neoproterozoic,coeval with the Qingbaikou system. The detrital zircon ages of 1.0-1.2 Ga from the Tumen Group, the Penglai Group and the Yushulazi Group indicate that there have being 1.0-1.2 Ga magmatic activities at the eastern margin of the North China craton. 7. The U-Pb age populations of the detrital zircons from the late Paleoproterozoic to Neoproterozoic sedimentary rocks suggest that the main Precambrian tectonic-thermal events of the North China craton happened at ~2.5 Ga and ~1.85 Ga. But the events at 2.7 Ga and 1.2 Ga are also of great significance. Hf isotope characteristics indicate that the significant crust growth periods of the North China craton are 2.7-3.0 Ga and ~2.5 Ga.
Resumo:
The Qilian Orogenic Belts had undergone very complicated evolutional histories and play an important role in understanding the tectonic evolutions of old terrains in northwestern China, in which granitiods formed during Proterozoic-early Mesozoic are widely outcropped. Detailed studies of these granitiods can shed some light on the tectonic evolution of this region. In this thesis, we have conducted geochronological and geochemical studies on eight selected granitic plutons to unravel their emplacement ages and petrogenesis. Furthermore, their tectonic implications were also discussed based on these results. In Neo-Proterozoic, our results suggest that two stages of magmatic activities were taken place in Central Qilian Block, GroupⅠ(750-790Ma) and Group Ⅱ(845- 930Ma). In Neo-Paleozoic, most granitic plutons were emplaced from Ordovician to Devonian, whereas granitiods with Triassic ages have also been discovered in South Qilian Belt. Inherited zircons with old ages of 1.7Ga, 2.1Ga and 2.7Ga have also been obtained in our study. Geochemical studies suggest that the Proterzoic granites were produced under high pressures and low temperatures from metamorphosed protolith rocks with compostions from basic to intermediate. This implies that some hot sources were underplated beneath lithosophere via mantle-derived magmatism. In combination with regional geological data, we propose that the Cental Qilian block was an old arc terrene during Precambrian, and two stage granitoids were formed under a back-arc extensional setting. Granitic rocks emplaced in early Paleozoic belong to strong peraluminous S-type granites, which were derived from metagreywacke having strong relationships with collisional process. Together with previous data, our results indicate that granitoids in Qilian Orogenic Belt formed during early Paleozoic have different petrogenesis and emplaced ages, which reflect that Qilian Orogenic Belt had underwent complicated multi-stage subduction-collusional processes in early Paleozoic. On the other hand, granitic rocks in South Qilian Belt with Triassic ages were formed by subduction of East Kulun during early Paleozoic-Late Mesozoic, which represent another orogenic episode in the northern margin of Tibetan Plateau.
Resumo:
Extensive high to ultrahigh pressure metamorphic rocks are outcropped in the the Dabie-Sulu UHP orogenic belt. Disputes still exist about for protolith nature of metamorphic rocks, petrogenesis, tectonic setting, and influence on upper mantle during the Triassic deep subduction. In this study, a combined study of petrology, geochemistry, isotope geochemistry and zircon chronology was accomplished for high-grade gneisses in the basement of the ultrahigh-pressure metamorphic Rongcheng terrane to reveal protolith nature and petrogenesis of the gneisses and to disucss the magmatic succession along the northern margin of the Yangtze block in Neoproterozoic. Gneisses in the Rongcheng terrane are characterized by negative Nb, Ta, P and Ti anomalies, relatively low Sr/Y ratios and relatively high Ba/La, Ba/Nb and Ba/Zr ratios, mostly displaying geochemical affinity to Phanerozoic volcanic arc. Neoproterozoic protolith ages (0.7 ~ 0.8 Ga) and Paleoproterozoic average crustal residence time (1.92 ~ 2.21 Ga) favour a Yangtze affinity. The gneisses mostly display characteristics of enrichment of LREE, flat heavy rare earth elements (REE) patterns, moderately fractionation between LREE and HREE and slight negative or positive Eu anomalies, probably reflecting that melting took place in the middle to low crust (26 ~ 33 km), where amphibole fractionated from the melts and/or inherited from source material as major mineral phases in the source area. Sr-Nd isotopic composition of the gneisses supports this conclusion. According to εNd(t) and εHf(t) values, the gneisses can be divided into three groups. Gneisses of group I have the highest εNd(t) and εHf(t) values, corresponding to the range of -6 ~ -3 and -2.9 ~ 13.4, respectively. This suggests obvious influx of depleted mantle or juvenile crust in the formation of protoliths. Gneisses of group II have medium εNd(t) (-9 ~ -7) and εHf(t) values (-15.8 ~ -1.4), corresponding to relatively high TDM2(Nd) (1.99 ~ 2.31 Ga) and TDM2(Hf) (1.76 ~ 2.67 Ga) , respectively. This suggests these gneisses were formed by partial melting of Paleoproterozoic crust. Gneisses of group III have the lowest εNd(t) (-15 ~ -10) and εHf(t) values (-15.8 ~ -1.4), corresponding to the largest TDM2(Nd) (1.99 ~ 2.31 Ga) and TDM2(Hf) ( 1.76 ~ 2.67 Ga), respectively. This indicates that gneisses of group III were formed by remelting of Archean crustal material and further demonstrates existence of an Archean basement probably of the Yangtze affinity beneath the Rongcheng terrane. Gneisses of three groups have also certain different geochemical characteristics. Contents of REEs and trace elements reduce gradually from group I to group III. Zirconium saturation temperatures also show similar tendency. Compared to gneisses of group II and group III, gneisses of group I display geochemical feature similar to extensional tectonic setting, having relatively little influence by the source area. Therefore, geochemical characteristics for gneisses of group I can indictate that the protoliths of the Rongcheng gneisses formed in an extensional rifting tectonic setting. This conclusion is supported by the results of eclogites and gabbros previously reported in the Dabie-Sulu orogenic belt. Statistical results of the protolith ages of the Rongcheng gneisses show two age peaks around ~728 Ma and ~783 Ma with an about 50 Ma gap. Extensive magatism in abou 750 Ma along the northern margin of the Yangtze block can hardly be observed in the Rongcheng terrane. This phenomenon likely suggests discontinuous Neoproterozoic magmatism along the northern margin of the Yangtze block.