993 resultados para Failure criteria
Resumo:
Steam Generator Tube Rupture (SGTR) sequences in Pressurized Water Reactors are known to be one of the most demanding transients for the operating crew. SGTR are a special kind of transient as they could lead to radiological releases without core damage or containment failure, as they can constitute a direct path from the reactor coolant system to the environment. The first methodology used to perform the Deterministic Safety Analysis (DSA) of a SGTR did not credit the operator action for the first 30 min of the transient, assuming that the operating crew was able to stop the primary to secondary leakage within that period of time. However, the different real SGTR accident cases happened in the USA and over the world demonstrated that the operators usually take more than 30 min to stop the leakage in actual sequences. Some methodologies were raised to overcome that fact, considering operator actions from the beginning of the transient, as it is done in Probabilistic Safety Analysis. This paper presents the results of comparing different assumptions regarding the single failure criteria and the operator action taken from the most common methodologies included in the different Deterministic Safety Analysis. One single failure criteria that has not been analysed previously in the literature is proposed and analysed in this paper too. The comparison is done with a PWR Westinghouse three loop model in TRACE code (Almaraz NPP) with best estimate assumptions but including deterministic hypothesis such as single failure criteria or loss of offsite power. The behaviour of the reactor is quite diverse depending on the different assumptions made regarding the operator actions. On the other hand, although there are high conservatisms included in the hypothesis, as the single failure criteria, all the results are quite far from the regulatory limits. In addition, some improvements to the Emergency Operating Procedures to minimize the offsite release from the damaged SG in case of a SGTR are outlined taking into account the offsite dose sensitivity results.
Analytical bearing capacity of strip footing in weightless materials with power-law failure criteria
Resumo:
Sokolovskii’s method of characteristics is extended to provide analytical solutions for the ultimate load at the moment of plastic failure under plane-strain conditions of shallow strip foundations on weightless rigid-plastic media with a noncohesive power-law failure envelope. The formulation is made parametrically in terms of the instantaneous friction angle, and the key idea to obtain the bearing capacity is that information can be transmitted from the free surface (where external loads are known) to the contact plane of the foundation. The methodology can consider foundations adjacent to a slope, external surcharges at the free surface, and inclined loads (both on the slope and on the foundation). Sensitivity analyses illustrate the influence on bearing capacity of changes in the different geometrical parameters involved. An application example is presented and design plots are provided, and model predictions are compared with results of bearing capacity tests under low gravity.
Resumo:
In part 1 of this article, cleavage initiation in the intercritically reheated coarse-grained heat affected zone (IC CG HAZ) of high-strength low-alloy (HSLA) steels was determined to occur between two closely spaced blocky MA particles. Blunt notch, crack tip opening displacement (CTOD), and precracked Charpy testing were used in this investigation to determine the failure criteria required for cleavage initiation to occur by this mechanism in the IC CG HAZ. It was found that the attainment of a critical level of strain was required in addition to a critical level of stress. This does not occur in the case of high strain rate testing, for example, during precracked Charpy testing. A different cleavage initiation mechanism is then found to operate. The precise fracture criteria and microstructural requirements (described in part I of this article) result in competition between potential cleavage initiation mechanisms in the IC CG HAZ.
Resumo:
Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material`s strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Master Thesis in Mechanical Engineering field of Maintenance and Production
Resumo:
A rheological model of sea ice is presented that incorporates the orientational distribution of ice thickness in leads embedded in isotropic floe ice. Sea ice internal stress is determined by coulombic, ridging and tensile failure at orientations where corresponding failure criteria are satisfied at minimum stresses. Because sea ice traction increases in thinner leads and cohesion is finite, such failure line angles are determined by the orientational distribution of sea ice thickness relative to the imposed stresses. In contrast to the isotropic case, sea ice thickness anisotropy results in these failure lines becoming dependent on the stress magnitude. Although generally a given failure criteria type can be satisfied at many directions, only two at most are considered. The strain rate is determined by shearing along slip lines accompanied by dilatancy and closing or opening across orientations affected by ridging or tensile failure. The rheology is illustrated by a yield curve determined by combining coulombic and ridging failure for the case of two pairs of isotropically formed leads of different thicknesses rotated with regard to each other, which models two events of coulombic failure followed by dilatancy and refreezing. The yield curve consists of linear segments describing coulombic and ridging yield as failure switches from one lead to another as the stress grows. Because sliding along slip lines is accompanied by dilatancy, at typical Arctic sea ice deformation rates a one-day-long deformation event produces enough open water that these freshly formed slip lines are preferential places of ridging failure.
Resumo:
Context Long-term antiretroviral therapy (ART) use in resource-limited countries leads to increasing numbers of patients with HIV taking second-line therapy. Limited access to further therapeutic options makes essential the evaluation of second-line regimen efficacy in these settings. Objectives To investigate failure rates in patients receiving second-line therapy and factors associated with failure and death. Design, Setting, and Participants Multicohort study of 632 patients >14 years old receiving second-line therapy for more than 6 months in 27 ART programs in Africa and Asia between January 2001 and October 2008. Main Outcome Measures Clinical, immunological, virological, and immunovirological failure (first diagnosed episode of immunological or virological failure) rates, and mortality after 6 months of second-line therapy use. Sensitivity analyses were performed using alternative CD4 cell count thresholds for immunological and immunovirological definitions of failure and for cohort attrition instead of death. Results The 632 patients provided 740.7 person-years of follow-up; 119 (18.8%) met World Health Organization failure criteria after a median 11.9 months following the start of second-line therapy (interquartile range [IQR], 8.7-17.0 months), and 34 (5.4%) died after a median 15.1 months (IQR, 11.9-25.7 months). Failure rates were lower in those who changed 2 nucleoside reverse transcriptase inhibitors (NRTIs) instead of 1 (179.2 vs 251.6 per 1000 person-years; incidence rate ratio [IRR], 0.64; 95% confidence interval [CI], 0.42-0.96), and higher in those with lowest adherence index (383.5 vs 176.0 per 1000 person-years; IRR, 3.14; 95% CI, 1.67-5.90 for <80% vs ≥95% [percentage adherent, as represented by percentage of appointments attended with no delay]). Failure rates increased with lower CD4 cell counts when second-line therapy was started, from 156.3 vs 96.2 per 1000 person-years; IRR, 1.59 (95% CI, 0.78-3.25) for 100 to 199/μL to 336.8 per 1000 person-years; IRR, 3.32 (95% CI, 1.81-6.08) for less than 50/μL vs 200/μL or higher; and decreased with time using second-line therapy, from 250.0 vs 123.2 per 1000 person-years; IRR, 1.90 (95% CI, 1.19-3.02) for 6 to 11 months to 212.0 per 1000 person-years; 1.71 (95% CI, 1.01-2.88) for 12 to 17 months vs 18 or more months. Mortality for those taking second-line therapy was lower in women (32.4 vs 68.3 per 1000 person-years; hazard ratio [HR], 0.45; 95% CI, 0.23-0.91); and higher in patients with treatment failure of any type (91.9 vs 28.1 per 1000 person-years; HR, 2.83; 95% CI, 1.38-5.80). Sensitivity analyses showed similar results. Conclusions Among patients in Africa and Asia receiving second-line therapy for HIV, treatment failure was associated with low CD4 cell counts at second-line therapy start, use of suboptimal second-line regimens, and poor adherence. Mortality was associated with diagnosed treatment failure.
Resumo:
Objectives To determine the improvement in positive predictive value of immunological failure criteria for identifying virological failure in HIV-infected children on antiretroviral therapy (ART) when a single targeted viral load measurement is performed in children identified as having immunological failure. Methods Analysis of data from children (<16 years at ART initiation) at South African ART sites at which CD4 count/per cent and HIV-RNA monitoring are performed 6-monthly. Immunological failure was defined according to both WHO 2010 and United States Department of Health and Human Services (DHHS) 2008 criteria. Confirmed virological failure was defined as HIV-RNA >5000 copies/ml on two consecutive occasions <365 days apart in a child on ART for ≥18 months. Results Among 2798 children on ART for ≥18 months [median (IQR) age 50 (21-84) months at ART initiation], the cumulative probability of confirmed virological failure by 42 months on ART was 6.3%. Using targeted viral load after meeting DHHS immunological failure criteria rather than DHHS immunological failure criteria alone increased positive predictive value from 28% to 82%. Targeted viral load improved the positive predictive value of WHO 2010 criteria for identifying confirmed virological failure from 49% to 82%. Conclusion The addition of a single viral load measurement in children identified as failing immunologically will prevent most switches to second-line treatment in virologically suppressed children.
Resumo:
The pattern of damage localization and fracture under uniaxial and biaxial tension was studied in glass–fiber nonwoven felts. The analyses were carried out within the framework of the finite-element simulation of plain and notched specimens in which the microstructure of the felt, made up of fiber bundles connected at the cross point through an organic binder, was explicitly represented. Following previous experimental observations, fracture by interbundle decohesion and energy dissipation by frictional sliding between the bundles were included in the model. It was found that the failure path in these materials was controlled by the maximum applied normal stress, regardless of the loading path, and that the failure locus under biaxial tension was well represented by the von Mises failure criteria. The notch sensitivity of the nonwoven felts was limited and the presence of a notch did not modify the failure path.
Resumo:
Cracks or checks in biscuits weaken the material and cause the product to break at low load levels that are perceived as injurious to product quality. In this work, the structural response of circular digestive biscuits, with diameter 72 mm and thickness 7.2 mm, simply supported around the circumference and loaded by a central concentrated force was investigated by experiment and theory. Tests were conducted to quantify the distribution in breakage strength for structurally sound biscuits, biscuits with natural checks and biscuits with a single known part-through crack. For sound biscuits the breakage force is Normally distributed with a mean of 12.5 N and standard deviation of 1.2 N. For biscuits with checks, the corresponding statistics are 9.6 N ± 2.62 N respectively. The presence of a crack weakens the biscuit and strength, as measured by breakage force falls almost linearly with crack length and crack depth. The orientation of the crack, whether radial or tangential, and its location (i.e. position of the crack mid-point on the biscuit surface) are also important. Deep, radial, cracks located close to the biscuit centre can reduce the strength by up to 50%. Two separate failure criteria were examined for sound and cracked biscuits respectively. The results from these tests were in good accord with theory. For a biscuit without defects, breakage occurred when maximum biscuit stress reached or exceeded the failure stress of 420 kPa. For a biscuit with cracks, breakage occurred as above or alternatively when its critical stress intensity factor of 18 kPam0.5 was reached.
Resumo:
The paper presents and discusses experimental procedures, visual observations and test results considered important to obtain data that can be used in validation of constitutive relations and failure criteria. The aim is to investigate the combined effects of stress intensity, stress-triaxiality and Lode parameter on the material response and failure behavior of aluminum alloys. Smooth and pre-notched tensile and shear specimens were manufactured from both very thin sheets and thicker plates to cover a wide range of stress triaxialities and Lode parameters. In addition, modified Arcan specimens were designed allowing investigation of the effect of sudden changes in stress states and deformation modes on the material behavior. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Manutenção
Resumo:
Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).
Resumo:
Doctoral Thesis Civil Engineering
Resumo:
The behaviour of masonry elements under in-plane and out-of-plane loads can be improved through the application of strengthening systems based on reinforcing overlays. After strengthening, the transition region between the original substrate and the strengthening layer is especially stressed, and premature failure of the strengthened masonry is reached if insufficient interfacial capacity is assured. Therefore, the assessment of the mechanical behaviour of the interface is critical to the development of the masonry strengthening system based on the application of strengthening overlays. In this research a method for the characterization of the interface behaviour between two different materials, a polypropylene fibre reinforced mortar (PFRM) and a ceramic brick used for masonry construction is presented. Direct shear tests were carried out in couplet specimens. Due to the orthotropic nature of the bricks surface, the shear load was applied along three different directions in order to perform an overall estimation of the interface behaviour. The peak and residual shear stresses, as well as the failure modes, were obtained at different levels of the normal stress. Based on these experimental results constitutive laws were assessed for the simulation of the interface mechanical behaviour based on the Mohr and Mohr-Coulomb failure criteria.