993 resultados para Failure Probability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unmanned Aircraft Systems (UAS) are one of a number of emerging aviation sectors. Such new aviation concepts present a significant challenge to National Aviation Authorities (NAAs) charged with ensuring the safety of their operation within the existing airspace system. There is significant heritage in the existing body of aviation safety regulations for Conventionally Piloted Aircraft (CPA). It can be argued that the promulgation of these regulations has delivered a level of safety tolerable to society, thus justifying the “default position” of applying these same standards, regulations and regulatory structures to emerging aviation concepts such as UAS. An example of this is the proposed “1309” regulation for UAS, which is based on the 1309 regulation for CPA. However, the absence of a pilot on-board an unmanned aircraft creates a fundamentally different risk paradigm to that of CPA. An appreciation of these differences is essential to the justification of the “default position” and in turn, to ensure the development of effective safety standards and regulations for UAS. This paper explores the suitability of the proposed “1309” regulation for UAS. A detailed review of the proposed regulation is provided and a number of key assumptions are identified and discussed. A high-level model characterising the expected number of third party fatalities on the ground is then used to determine the impact of these assumptions. The results clearly show that the “one size fits all” approach to the definition of 1309 regulations for UAS, which mandates equipment design and installation requirements independent of where the UAS is to be operated, will not lead to an effective management of the risks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reconsider standard uniaxial fatigue test data obtained from handbooks. Many S-N curve fits to such data represent the median life and exclude load-dependent variance in life. Presently available approaches for incorporating probabilistic aspects explicitly within the S-N curves have some shortcomings, which we discuss. We propose a new linear S-N fit with a prespecified failure probability, load-dependent variance, and reasonable behavior at extreme loads. We fit our parameters using maximum likelihood, show the reasonableness of the fit using Q-Q plots, and obtain standard error estimates via Monte Carlo simulations. The proposed fitting method may be used for obtaining S-N curves from the same data as already available, with the same mathematical form, but in cases in which the failure probability is smaller, say, 10 % instead of 50 %, and in which the fitted line is not parallel to the 50 % (median) line.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we define a new scheme to develop and evaluate protection strategies for building reliable GMPLS networks. This is based on what we have called the network protection degree (NPD). The NPD consists of an a priori evaluation, the failure sensibility degree (FSD), which provides the failure probability, and an a posteriori evaluation, the failure impact degree (FID), which determines the impact on the network in case of failure, in terms of packet loss and recovery time. Having mathematical formulated these components, experimental results demonstrate the benefits of the utilization of the NPD, when used to enhance some current QoS routing algorithms in order to offer a certain degree of protection

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AEA Technology has provided an assessment of the probability of α-mode containment failure for the Sizewell B PWR. After a preliminary review of the methodologies available it was decided to use the probabilistic approach described in the paper, based on an extension of the methodology developed by Theofanous et al. (Nucl. Sci. Eng. 97 (1987) 259–325). The input to the assessment is 12 probability distributions; the bases for the quantification of these distributions are discussed. The α-mode assessment performed for the Sizewell B PWR has demonstrated the practicality of the event-tree method with input data represented by probability distributions. The assessment itself has drawn attention to a number of topics, which may be plant and sequence dependent, and has indicated the importance of melt relocation scenarios. The α-mode failure probability following an accident that leads to core melt relocation to the lower head for the Sizewell B PWR has been assessed as a few parts in 10 000, on the basis of current information. This assessment has been the first to consider elevated pressures (6 MPa and 15 MPa) besides atmospheric pressure, but the results suggest only a modest sensitivity to system pressure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to study the failure of disordered materials, the ensemble evolution of a nonlinear chain model was examined by using a stochastic slice sampling method. The following results were obtained. (1) Sample-specific behavior, i.e. evolutions are different from sample to sample in some cases under the same macroscopic conditions, is observed for various load-sharing rules except in the globally mean field theory. The evolution according to the cluster load-sharing rule, which reflects the interaction between broken clusters, cannot be predicted by a simple criterion from the initial damage pattern and even then is most complicated. (2) A binary failure probability, its transitional region, where globally stable (GS) modes and evolution-induced catastrophic (EIC) modes coexist, and the corresponding scaling laws are fundamental to the failure. There is a sensitive zone in the vicinity of the boundary between the GS and EIC regions in phase space, where a slight stochastic increment in damage can trigger a radical transition from GS to EIC. (3) The distribution of strength is obtained from the binary failure probability. This, like sample-specificity, originates from a trans-scale sensitivity linking meso-scopic and macroscopic phenomena. (4) Strong fluctuations in stress distribution different from that of GS modes may be assumed as a precursor of evolution-induced catastrophe (EIC).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a slice-sampling method and study the ensemble evolution of a large finite nonlinear system in order to model materials failure. There is a transitional region of failure probability. Its size effect is expressed by a slowly decaying scaling law. In a meso-macroscopic range (similar to 10(5)) in realistic failure, the diversity cannot be ignored. Sensitivity to mesoscopic details governs the phenomena. (C) 1997 Published by Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Engineering assets are often complex systems. In a complex system, components often have failure interactions which lead to interactive failures. A system with interactive failures may lead to an increased failure probability. Hence, one may have to take the interactive failures into account when designing and maintaining complex engineering systems. To address this issue, Sun et al have developed an analytical model for the interactive failures. In this model, the degree of interaction between two components is represented by interactive coefficients. To use this model for failure analysis, the related interactive coefficients must be estimated. However, methods for estimating the interactive coefficients have not been reported. To fill this gap, this paper presents five methods to estimate the interactive coefficients including probabilistic method; failure data based analysis method; laboratory experimental method; failure interaction mechanism based method; and expert estimation method. Examples are given to demonstrate the applications of the proposed methods. Comparisons among these methods are also presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Split System Approach (SSA) based methodology is presented to assist in making optimal Preventive Maintenance decisions for serial production lines. The methodology treats a production line as a complex series system with multiple PM actions over multiple intervals. Both risk related cost and maintenance related cost are factored into the methodology as either deterministic or random variables. This SSA based methodology enables Asset Management (AM) decisions to be optimized considering a variety of factors including failure probability, failure cost, maintenance cost, PM performance, and the type of PM strategy. The application of this new methodology and an evaluation of the effects of these factors on PM decisions are demonstrated using an example. The results of this work show that the performance of a PM strategy can be measured by its Total Expected Cost Index (TECI). The optimal PM interval is dependent on TECI, PM performance and types of PM strategies. These factors are interrelated. Generally it was found that a trade-off between reliability and the number of PM actions needs to be made so that one can minimize Total Expected Cost (TEC) for asset maintenance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Preventive Maintenance (PM) is often applied to improve the reliability of production lines. A Split System Approach (SSA) based methodology is presented to assist in making optimal PM decisions for serial production lines. The methodology treats a production line as a complex series system with multiple (imperfect) PM actions over multiple intervals. The conditional and overall reliability of the entire production line over these multiple PM intervals are hierarchically calculated using SSA, and provide a foundation for cost analysis. Both risk-related cost and maintenance-related cost are factored into the methodology as either deterministic or random variables. This SSA based methodology enables Asset Management (AM) decisions to be optimised considering a variety of factors including failure probability, failure cost, maintenance cost, PM performance, and the type of PM strategy. The application of this new methodology and an evaluation of the effects of these factors on PM decisions are demonstrated using an example. The results of this work show that the performance of a PM strategy can be measured by its Total Expected Cost Index (TECI). The optimal PM interval is dependent on TECI, PM performance and types of PM strategies. These factors are interrelated. Generally, it was found that a trade-off between reliability and the number of PM actions needs to be made so that one can minimise Total Expected Cost (TEC) for asset maintenance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The move towards IT outsourcing is the first step towards an environment where compute infrastructure is treated as a service. In utility computing this IT service has to honor Service Level Agreements (SLA) in order to meet the desired Quality of Service (QoS) guarantees. Such an environment requires reliable services in order to maximize the utilization of the resources and to decrease the Total Cost of Ownership (TCO). Such reliability cannot come at the cost of resource duplication, since it increases the TCO of the data center and hence the cost per compute unit. We, in this paper, look into aspects of projecting impact of hardware failures on the SLAs and techniques required to take proactive recovery steps in case of a predicted failure. By maintaining health vectors of all hardware and system resources, we predict the failure probability of resources based on observed hardware errors/failure events, at runtime. This inturn influences an availability aware middleware to take proactive action (even before the application is affected in case the system and the application have low recoverability). The proposed framework has been prototyped on a system running HP-UX. Our offline analysis of the prediction system on hardware error logs indicate no more than 10% false positives. This work to the best of our knowledge is the first of its kind to perform an end-to-end analysis of the impact of a hardware fault on application SLAs, in a live system.