997 resultados para Factor XIII
Resumo:
Family linkage studies were used to detect two linkage relationships on human chromosome 1. The B subunit of coagulation factor XIII showed significant linkage to renin with a maximum lod score of 5.071 at a distance of 10 cM. Significant linkage was also shown between the Duffy blood group and α-spectrin with linkage results giving a combined lod score of 3.194 at 5 cM.
Resumo:
A mutation in the factor XIII gene (FXIII Val34Leu) gene was recently reported to confer protection against myocardial infarction, but its relationship with venous thrombosis is unknown. In addition, a mutation in the 5'-untranslated region of the FXII gene (46 C→T) was identified which is associated with low plasma levels of the protein. Its prevalence in patients with venous thrombosis is also unknown. We investigated the frequency of the FXIII Val34Leu and FXII 46 C→T mutations in 189 patients with deep venous thrombosis and in 187 age-, gender- and race-matched controls. FXIII Val34Leu was detected in 38.6% of the patients and in 41.2% of the controls. Interestingly, homozygosity for the FXIII mutation was found in 1.6% of the patients and in 9.6% of the controls. yielding an odds ratio (OR) for venous thrombosis of 0.16 (95% CI: 0.05-0.5). The OR for heterozygotes was 1.1 (95% CI: 0.7-1.7). The FXII 46 C→T mutation was detected in 46.0% of the patients and in 48.6% of the controls. The OR for heterozygotes was 0.9 (95% CI: 0.6-1.4) and for homozygotes the OR was 0.8 (95% CI: 0.3-1.9). Our data indicate that the FXII 46 C→T mutation is unlikely to be a major risk factor for venous thrombotic disease. In contrast, the homozygous state for FXIII Val34Leu is a strong protective factor against venous thrombosis, which emerges as a novel generic factor involved in the aetiology of thrombophilia.
Resumo:
We have recently shown that FXIII activation peptide (AP-FXIII) can be measured in plasma. The objective of this pilot study was to investigate for the first time if AP-FXIII can be detected in plasma from patients with acute ischaemic stroke.
Resumo:
Severe factor XIII (FXIII) deficiency is a rare autosomal recessive coagulation disorder affecting one in two million individuals. The aim of the present study was to screen for and analyse F13B gene defects in the German population. A total of 150 patients presenting with suspected FXIII deficiency and one patient with severe (homozygous) FXIII deficiency were screened for mutations in F13A and F13B genes. Twenty-five individuals presented with detectable heterozygous mutations, 12 of them in the F13A gene and 13 of them in the F13B gene. We report on the genotype-phenotype correlations of the individuals showing defects in the F13B gene. Direct sequencing revealed 12 unique mutations including seven missense mutations (Cys5Arg, Ile81Asn, Leu116Phe, Val217Ile, Cys316Phe, Val401Glu, Pro428Ser), two splice site mutations (IVS2-1G>C, IVS3-1G>C), two insertions (c.1155_1158dupACTT, c.1959insT) and one in-frame deletion (c.471-473delATT). Two of the missense mutations (Cys5Arg, Cys316Phe) eliminated disulphide bonds (Cys5-Cys56, Cys316-Cys358). Another three missense mutations, (Leu116Phe, Val401Glu, Pro428Ser) were located proximal to other cysteine disulphide bonds, therefore indicating that the region in and around these disulphide bonds is prone to functionally relevant mutations in the FXIII-B subunit. The present study reports on a fairly common prevalence of F13B gene defects in the German population. The regions in and around the cysteine disulphide bonds in the FXIII-B protein may be regions prone to frequent mutations.
Resumo:
Severe hereditary coagulation factor XIII deficiency is a rare homozygous bleeding disorder affecting one person in every two million individuals. In contrast, heterozygous factor XIII deficiency is more common, but usually not associated with severe hemorrhage such as intracranial bleeding or hemarthrosis. In most cases, the disease is caused by F13A gene mutations. Causative mutations associated with the F13B gene are rarer.
Resumo:
Less than 60 cases of acquired factor (F)XIII deficiencies have been reported, most having distinct clinical features. To illustrate the therapeutic challenges of acquired FXIII inhibitors, we report a case of a 65-year-old patient with no previous bleeding history who suddenly developed massive haemorrhages associated to a strong and isolated FXIII inhibitor. No underlying disorder has been detected till now after three years of follow-up. Despite aggressive treatment with prednisone, rituximab, cyclophosphamide, immunoglobulin, immunoadsorption and immune tolerance his inhibitor is still present, although at low titre and with a clinical benefit since the patient has no more bleed since more than one year. Moreover the patient had a venous thromboembolic complication. After a review of the management of acquired FXIII deficiency patients and based on the management of acquired haemophilia we discuss a possible strategy for such difficult cases.
Resumo:
To cite this article: Schroeder V, Kohler HP. New developments in the area of factor XIII. J Thromb Haemost 2013; 11: 234-44. Summary. Coagulation factor (F)XIII is best known for its role in fibrin stabilization and cross-linking of antifibrinolytic proteins to the fibrin clot. From patients with congenital FXIII deficiency, it is known that FXIII also has important functions in wound healing and maintaining pregnancy. Over the last decade more and more research groups with different backgrounds have studied FXIII and have unveiled putative novel functions for FXIII. FXIII, with its unique role as a transglutaminase among the other serine protease coagulation factors, is now recognized as a multifunctional protein involved in regulatory mechanisms and construction and repair processes beyond hemostasis with possible implications in many areas of medicine. The aim of this review was to give an overview of exciting novel findings and to highlight the remarkable diversity of functions attributed to FXIII. Of course, more research into the underlying mechanisms and (patho-)physiological relevance of the many described functions of FXIII is needed. It will be exciting to observe future developments in this area and to see if and how these interesting findings may be translated into clinical practice in the future.
Resumo:
In 1960, the first case report on factor XIII deficiency was published describing a seven-year-old Swiss boy with a so far unknown bleeding disorder. Today, more than 60 mutations in the factor XIIIA- and B-subunit genes are known leading to congenital factor XIII deficiency. In the present study, we describe six novel mutations in the factor XIII A-subunit gene. Additionally, we present the molecular characterisation of the first described patient with congenital factor XIII deficiency. The six novel mutations include a small deletion, Glu202 delG, leading to a premature stop codon and truncation of the protein, and a splice site mutation at the exon 10/intron 10 boundary, +1G/A, giving rise to an incorrect spliced mRNA lacking exons 10 and 11. The remaining four mutations are characterised by the single amino acid changes Met159Arg, Gly215Arg, Trp375Cys, and His716Arg, and were expressed in COS-1 cells. Antigen levels and activity of the mutants were significantly reduced compared to the wild-type. The patient described in 1960 also shows a single amino acid change, Arg77Cys. Structural analysis of all mutant enzymes suggests several mechanisms leading to destabilisation of the protein.
Resumo:
OBJECTIVE: In sepsis, activation of coagulation and inhibition of fibrinolysis lead to microvascular thrombosis. Thus, clot stability might be a critical issue in the development of multiple organ dysfunction syndrome. Activated FXIII (FXIIIa) forms stable fibrin clots by covalently cross-linking fibrin monomers. Therefore, we investigated the impact of FXIII antigen and activity levels on disease severity and fatality in sepsis patients. PATIENTS AND METHODS: FXIII subunit A (FXIIIA) and FXIII cross-linking activity (FXIIICA) were measured in 151 controls, in 32 patients with severe sepsis and 8 with septic shock. In addition, FXIII subunit B (FXIIIB) was measured in the sepsis patients. Moreover, clotting parameters were determined. RESULTS: Patients suffering from sepsis (n=40) had significantly (p<0.005) lower FXIIIA levels (median [range]: 36.5% [8.8-127.4%]) and FXIIICA levels (76.5% [9.4-266%]) as compared to healthy controls (n=151, 119% [31.3-283.2] and 122.4% [40.6-485.3], respectively). No difference in FXIIIA, FXIIIB and FXIIICA levels between survivors and non-survivors, nor between patients with severe sepsis and septic shock was found. The specific activity of FXIII (FXIIICA/FXIIIA, SA(FXIII)) was significantly (p<0.001) higher in sepsis patients (2.0 [0.8-5.3]) as compared to healthy controls (1.0 [0.4-5.1]). SA(FXIII) significantly (p<0.05) increased with fatality (non-survivors [n=13] vs. survivors [n=27]: 3.3 [1.2-5.0] vs. 1.9 [0.8-5.3]) and disease severity (septic shock vs. severe sepsis: 3.4 [1.8-4.3] vs. 1.9 [0.8-5.3]). CONCLUSION: We show decreased FXIIICA and FXIIIA levels, but higher SA(FXIII) in sepsis as compared to controls. Increased SA(FXIII) correlates with disease severity and fatality in sepsis patients.