986 resultados para Facies analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents an analysis of facies of sedimentary sequences that occur as discontinuous bodies in the Jundiai region, west of the main Tertiary continental basins of the southeastern Brazil continental rift. Nine identified sedimentary facies, grouped into four associations, suggest the existence of an ancient alluvial fan system whose source area was the Japi mountain range (Serra do Japi). The deposits are considered Tertiary in age and chronocorrelated with those identified in the Atibaia region and at other sites up to 100 km east and northeast of Jundiai. The depositional model adopted to explain the filling of the basin proposes that the alluvial fans, which directly derive from the source area, terminated in a braided channel longitudinal to the basin axis that flowed to northwest, in a similar configuration to that of the present day. This basin may have extended to the Atibaia region or formed a set of small basins laterally contiguous to the faults associated with the rift. Such occurrences show that the formation of rift basins was broader than the area presently occupied by the main deposits. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facies descriptions of the Codó Formation in the Grajaú area are provided for the first time, and its sedimentary characteristics compared to those from the Codó area to allow paleoenvironmental reconstructions. Deposits in the Grajaú area include evaporites, limestones and argillites bearing features indicative of a shallow, low energy, subaqueous, saline environment exposed to meteoric and/or capillary conditions. Floodingevaporative concentration-desiccation cycles suggest a saline pan complex surrounded by extensive evaporitic mudflats. The location of the system, whether coastal or inland, is a matter open for debate. However, the later hypothesis is favored considering: 1. Sr isotopic data, with values higher than those expected for Late Aptian marine waters; 2. calcitic composition of limestones (instead of dolomitic and/or magnesitic as expected in coastal settings); and 3. presence of continental ostracods and lack of marine fauna. This interpretation is consistent with that proposed for UpperAptian deposits of the Codó area, but the depositional system there was one dominated by more stable, well-stratified, anoxic waters and evaporite precipitation in central lacustrine areas, while in the Grajaú area the salt pan was more oxygenated and ephemeral, with salt precipitation mainly in marginal areas or along surrounding mudflats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cape Roberts Project drill core 3 (CRP-3) was obtained from Roberts ridge, a sea-floor high located at 77°S, 12 km offshore from Cape Roberts in western McMurdo Sound, Antarctica. The recovered core is about 939 m long and comprises strata dated as being early Oligocene (possibly latest Eocene) in age, resting unconformably on ~116 m of basement rocks consisting of Palaeozoic Beacon Supergroup sediments. The core includes ten facies commonly occurring in five major associations that are repeated in particular sequences throughout the core and which are interpreted as representing different depositional environments through time. Depositional systems inferred to be represented in the succession include: outer shelf, inner shelf, nearshore to shoreface each under iceberg influence, deltaic and/or grounding-line fan, and ice proximal-ice marginal-subglacial (mass flow/rainout diamictite/subglacial till) singly or in combination. The record is taken to represent the initial talus/alluvial fan setting of a glaciated rift margin adjacent to the block-uplifted Transantarctic Mountains. Development of a deltaic succession upcore was probably associated with the formation of palaeo-Mackay valley with temperate glaciers in its headwaters. At that stage glaciation was intense enough to support glaciers ending in the sea elsewhere along the coast, but a local glacier was fluctuating down to the sea by the time the youngest part of CRP-3 was being deposited. Changes in palaeoenvironmental interpretations in this youngest part of the core are used to estimate relative glacial proximity to the drillsite through time. These inferred glacial fluctuations are compared with the global d180 and Mg/Ca curves to evaluate the potential of glacial fluctuations on Antarctica for influencing these records of global change. Although the comparisons are tentative at present, the records do have similarities, but there are also some differences that require further evaluation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the coast of Santa Catarina State (southern Brazil), a large population of monumental shell mounds characterizes a highly dynamic coastal setting. In this paper, sedimentary facies analysis was adapted for description, sampling, and interpretation of shell mound complex and repetitive archaeostratigraphic successions. Archaeofacies identification in the field, according to depositional attributes, is tested by contrasting field description with multi-element chemical analyses, total carbon and nitrogen determinations, and micromorphological descriptions. Two vertical sequences at the black deposit of Jabuticabeira II shell mound were studied and preliminary results showed that: (1) depositional attributes are a reliable base for archaeofacies identification in the field, (2) the formation process of this site involved a sequence of anthropic depositional processes, where burned refuse was redeposited over the shell mound following a ritual construction pattern, and (3) the black deposit includes a double palimpsest that refers to provenance and meaning of mound construction material. (C) 2009 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Cervarola Sandstones Formation (CSF), Aquitanian-Burdigalian in age, was deposited in an elongate, NW-stretched foredeep basin formed in front of the growing Northern Apennines orogenic wedge. The stratigraphic succession of the CSF, in the same way of other Apennine foredeep deposits, records the progressive closure of the basin due to the propagation of thrust fronts toward north-east, i.e. toward the outer and shallower foreland ramp. This process produce a complex foredeep characterized by synsedimentary structural highs and depocenters that can strongly influence the lateral and vertical turbidite facies distribution. Of consequence the main aim of this work is to describe and discuss this influence on the basis of a new high-resolution stratigraphic framework performed by measuring ten stratigraphic logs, for a total thickness of about 2000m, between the Secchia and Scoltenna Valleys (30km apart). In particular, the relationship between the turbidite sedimentation and the ongoing tectonic activity during the foredeep evolution has been describe through various stratigraphic cross sections oriented parallel and perpendicular to the main tectonic structures. On the basis of the high resolution physical stratigraphy of the studied succession, we propose a facies tract and an evolutionary model for the Cervarola Sandstones in the studied area. Thanks to these results and the analogies with others foredeep deposits of the northern Apennines, such as the Marnoso-arenacea Formation, the Cervarola basin has been interpreted as a highly confined foredeep controlled by an intense synsedimentary tectonic activity. The most important evidences supporting this hypothesis are: 1) the upward increase, in the studied stratigraphic succession (about 1000m thick), of sandstone/mudstone ratio, grain sizes and Ophiomorpha-type trace fossils testifying the high degree of flow deceleration related to the progressive closure and uplift of the foredeep. 2) the occurrence in the upper part of the stratigraphic succession of coarse-grained massive sandstones overlain by tractive structures such as megaripples and traction carpets passing downcurrent into fine-grained laminated contained-reflected beds. This facies tract is interpreted as related to deceleration and decoupling of bipartite flows with the deposition of the basal dense flows and bypass of the upper turbulent flows. 3) the widespread occurrence of contained reflected beds related to morphological obstacles created by tectonic structures parallel and perpendicular to the basin axis (see for example the Pievepelago line). 4) occurrence of intra-formational slumps, constituted by highly deformed portion of fine-grained succession, indicating a syn-sedimentary tectonic activity of the tectonic structures able to destabilize the margins of the basin. These types of deposits increase towards the upper part of the stratigraphic succession (see points 1 and 2) 5) the impressive lateral facies changes between intrabasinal topographic highs characterized by fine-grained and thin sandstone beds and marlstones and depocenters characterized by thick to very thick coarse-grained massive sandstones. 6) the common occurrence of amalgamation surfaces, flow impact structures and mud-draped scours related to sudden deceleration of the turbidite flows induced by the structurally-controlled confinement and morphological irregularities. In conclusion, the CSF has many analogies with the facies associations occurring in other tectonically-controlled foredeeps such as those of Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (southern France) showing how thrust fronts and transversal structures moving towards the foreland, were able to produce a segmented foredeep that can strongly influence the turbidity current deposition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Jurassic Muskox and Jericho kimberlites (Northern Slave Province, Nunavut, Canada) contain a variety of facies exhibiting different geometries, contact relationships, internal organisation, country rock abundance and olivine shapes, although many have similar matrix/groundmass mineralogies and textures. Five facies are examined that either have characteristics consistent with coherent rocks in general (i.e. intrusive and extrusive non-fragmental rocks) or are mineralogically and texturally similar to kimberlite described as coherent (or apparent coherent). Three facies are interpreted as coherent on the basis of: (1) geological setting, (2) apparent-porphyritic texture, (3) sharp contacts with fragmental kimberlite, (4) relative abundance of elongate and unbroken olivine crystals and (5) paucity of country rock xenoliths, while the remaining two facies are interpreted as fragmental on the basis of: (1) the gradational contacts with demonstrably fragmental kimberlite, (2) relative abundance and range of sizes of country rock lithic clasts and (3) numerous broken olivine crystals. Comparisons are made with coherent and apparent-coherent kimberlite from the literature. Our three coherent facies are similar to literature reported coherent kimberlite dykes hosted in country rock (CKd) in terms of internal organisation, low abundance of country rock xenoliths, and apparent-porphyritic texture. Conversely, our two fragmental facies share attributes with previously described pipe-filling coherent and apparent-coherent kimberlite (CKpf) in terms of geometry, internal organisation and abundance of country rock xenoliths. We conclude that CKd and most CKpf, although similar in matrix/groundmass mineralogy and texture, can be distinguished on the basis of internal organisation, country rock lithic clast abundance, texture (e.g. apparent-porphyritic texture) and possibly olivine crystal shapes and suggest that fragmental kimberlite is more common than reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The disequilibrium between supply and demand the east part of North China accelerated natural gas exploration in Bohai bay basin. Exploration practice showed that coal-derived gas is important resource. In searching of big to middle scaled coal derived gas field, and realize successive gas supply, the paper carried out integrated study on structural evolution of Pre-Tertiary and evaluation of reservoir forming condition of coal-derived gas. Study work of the paper was based on the following condition: available achievement in this field at present, good understanding of multiphase of tectonic movement. Study work was focused on geological evolution, source rock evaluation and dissection key factors controlling reservoir forming. Based on analysis of seismic data, drilling data, tectonic style of Pre-Tertiary was subdivided, with different tectonic style representing different tectonic process. By means of state of the art, such as analysis of balanced cross section, and erosion restoration, the paper reestablished tectonic history and analyzed basin property during different tectonic phase. Dynamic mechanism for tectonic movement and influence of tectonic evolution on tectonic style were discussed. Study made it clear that tectonic movement is intensive since Mesozoic including 2 phase of compressional movement (at the end of Indo-China movement, and Yanshan movement), 2 phase of extensional movement (middle Yanshan movement, and Himalayan movement), 2 phase of strike slip movement, as well as 2 phase of reversal movement (early Yanshan movement, and early Himalayan movement). As a result, three tectonic provinces with different remnant of strata and different tectonic style took shape. Based on afore mentioned study, the paper pointed out that evolution of Bohai bay basin experienced the following steps: basin of rift valley type (Pt2+3)-craton basin at passive continental margin (∈1-2)-craton basin at active continental margin (∈3- O)-convergent craton basin (C-T1+2)-intracontinental basin (J+K). Superposition of basins in different stage was discussed. Aimed at tectonic feature of multiple phases, the paper put forward concept model of superposition of tectonic unit, and analyzed its significance on reservoir forming. On basis of the difference among 3 tectonic movements in Mesozoic and Cenozoic, superposition of tectonic unit was classified into the following 3 categories and 6 types: continuous subsidence type (I), subsidence in Mesozoic and uplift for erosion in Cenozoic (II1), repeated subsidence and uplift in Mesozoic and subsidence in Cenozoic (II2), repeated subsidence and uplift in Mesozoic and uplift for erosion in Cenozoic (II3), uplift for erosion in Mesozoic and subsidence in Cenozoic (II4), and continuous uplift (III). Take the organic facies analysis as link, the paper established relationship between sedimentary environment and organic facies, as well as organic facies and organic matter abundance. Combined information of sedimentary environment and logging data, the paper estimated distribution of organic matter abundance. Combined with simulation of secondary hydrocarbon generation, dynamic mechanism of hydrocarbon generation, and thermal history, the paper made static and dynamic evaluation of effective source rock, i.e. Taiyuan formation and Shanxi formation. It is also pointed out that superposition of tectonic unit of type II2, type II4, and type I were the most favorable hydrocarbon generation units. Based on dissection of typical primary coal-derived gas reservoir, including reservoir forming condition and reservoir forming process, the paper pointed out key factors controlling reservoir forming for Carboniferous and Permian System: a. remnant thickness and source rock property were precondition; b. secondary hydrocarbon generation during Himalayan period was key factor; c. tectonic evolution history controlling thermal evolution of source rock was main factor that determine reservoir forming; d. inherited positive structural unit was favorable accumulation direction; e. fault activity and regional caprock determined hydrocarbon accumulation horizon. In the end, the paper established reservoir forming model for different superposition of tectonic units, and pointed out promising exploration belts with 11 of the first class, 5 of the second class and 6 of the third class.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Livingston Island, the second island of South Shetland Island, constains Mesozoic-Cenozoic basement, Mesozoic-Cenozoic volcanic sequences, plutonic intrusions and post-subduction volcanic rocks, which document the history and evolution of an important part of the South Shetland Islands magmatic arc. The sedimentary sequence is named the Miers Bluff Formation (MBF) and is interpreted as turbidite since the first geological study on South Shetland Islands, and is interpreted as turbidite. It base and top are not exposed, but a thickness of more than 3000m has been suggested and seems plausible. The turbidite is overlain by Mid - Cretaceous volcanic rocks and intruded by Eocene tonalites. The age of the Miers Bluff Formation is poorly constrained Late Carboniferous -Early Triassic. Sedimentary Environment, tectonic setting and forming age of sedimentary rocks of the Miers Bluff Formation were discussed by means of the methods of sedimentology, petrography and geochemistry, combinig with the study of trace fossils and microfossil plants. The following conclusions are obstained. A sedimentary geological section of Johnsons Dock is made by outside measuring and watching, and then according the section, the geological map near the Spanish Antarctic station was mapped. Four pebbly mudstone layers are first distinguished, which thickness is about 10m. The pebbly mudstone is the typical rock of debris flow, and the depostional environment of pebbly mudstone may be the channel of mid fan of submarine fan. The sedimentsry structural characteristics and size analysis of sandstones show the typical sedimentary feature of turbidity flow and the Miers Bluff Formation is a deep-water turbidite (include some gravity-flow sediments). The materials of palaeocurrents suggest the continental slope dip to southeast, and indicate the provenance of turbidity sediment in the northwest area. By facies analysis, six main facies which include seven subfacies were recognized, which are formed in mid-fan and lower-fan of submarine, meanwhile, the sedimentary features of each facies and subfacies are summarized. The study of clastic composition, major elements, trace elements and rare earth elements indicates the forming setting of the Miers Bluff Formaton is active continental margin and continental island arc and the provenance is dissected magmatic arc which main composition is felsic gneiss. Many trace fossils of the whole succession were found in the turbidites of the Miers Bluff Formation. All these trace fossils are deep sea ichnofossils. There are fifteen ichnogenus, sixteen ichnospecies. Moreover, a new trace fossil was found and a new ichnogenus and new ichnospecies was proposed - Paleaichnus antarctics ichnogen, et ichnosp, nov.. Except the new ichnogenus and ichnospecies, others had been found in deep-sea flysch turbidites. Some are in mudstone and are preserved in the cast convex of overlying sandstone sole, they formed before turbidity flows occurred and belong to the high-different Graphoglyptida of fiysch mudstone. Others as Fucusopsis and Neonereites are preserved in sandstones and stand for trace assemblages after turbidity sedimentation. These trace fossils are typical members of abyssal "Nereites" ichnofacies, and provide for the depositional environment of the Miers Bluff Formation. Fairly diverse microfossil plants have been recovered from the Miers Bluff Formation, Livingston Island, including spores, pollen, acritarchs, wood fragments and cuticles. Containing a total of about 45 species (forms) of miospores, the palynofiora is quantitatively characterized by the dominance of non-striate bisaccate pollen, but spores of pteridophytes and pollen of gymnosperms are proportionate in diversity. It is somewhat comparable to the subzone C+D of the Alisporites zone of Antarctica, and the upper Craterisporites rotundus zone and the lower Polycingulatisporites crenulatus zone of Australia, suggesting a Late Triassic (possibly Norian-Rhaetian) age, as also evidenced by the sporadic occurrence of Aratrisporites and probable Classopollis as well as the complete absence of bisaccate Striatiti. The parent vegetation and paleoclimate are preliminarily deduced. At last, the paper prooses the provenance of sedimentary rocks of the Miers Bluff Formation locates in the east part to the southern Chile(or Southern South American). In the Triassic period, contrasting with New Zealand, Australia and South American of the Pacific margin of Gondwanaland, the Miers Bluff Formation is deposited in the fore-arc basin or back-arc basin of magmatic arc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The petroleum migration, happening in the geologic past, is the very important and complex dynamic processes in the petroleum systems. It plays a linking role among all static factors in a system. The accumulation is in fact the result of the petroleum migration. For the petroleum geology, the dynamics research of the petroleum migration refers to the mechanism and process research, as well as the use of the quantitative methods. In this thesis, combining with the qualitative analysis and quantitative modeling, the author manages to discuss theoretically some key problems dealing with migration processes, which have not been solved yet, and to apply the studied results in petroleum system analysis in actual basins. The basin analysis offers the base of the numerical modeling for geological phenomena occurring in sedimentary basins, that consists of the sedimentary facies analysis, the section reconstructing technique, eroded thickness estimating, etc. The methods to construct the geologic model, which is needed in the research of oil and gas migration and accumulation, are discussed. The basin analysis offers also the possibility for the latter modeling works to get and select the parameters, such as stratum's thickness, age, stratigraphy etc. Modeling works were done by using two basin modeling softwares: Basin_Mod and TPC_Mod. The role of compaction during the secondary migration and the heterogeneity of migrating paths within the clastic carrier are modeled. And the conclusions were applied in the migration studies in the Jungaer Basin, lying on the Northwest part of the China. To construct a reliable migration model, the author studied the characteristics of the sedimentation, the pore fluid pressure evolution, as well as the distribution and the evolution of fluid potential, following the tectonic evolution of the Jungaer Basin. The geochemical prospecting results were used to evidence and to calibrate the migration processes: the oil-source correlation, the distribution of the properties of oil, gas and water. Finally, two important petroleum systems, Permian one and Jurassic one were studied and identified, according, principally, to the studies on the petroleum migration within the Jungaer Basin. Since the oil, as well as the gas, moves mainly in separate phase during the secondary migration, their migrating behaviors would be determined by the dynamics conditions of migration, including the driving forces and pathways. Based on such a consideration, the further understandings may be acquired: the roles played by permeable carriers and low-permeable source rock would be very different in compaction, overpressure generation, petroleum migration, and so on. With the numerical method, the effect of the compaction on the secondary migration was analyzed and the results show that the pressure gradient and the flux resulted from compaction are so small that could be neglected by comparing to the buoyancy of oil. The main secondary migration driving forces are therefore buoyancy and capillary within a hydrostatic system. Modeling with the commercial software-Basin_Mod, the migration pathways of petroleum in clastic carriers seem to be inhomogeneous, controlled by heterogeneity of the driving force, which in turn resulted from the topography of seals, the fabrics and the capillary pressure of the clastic carriers. Furthermore, the direct and indirect methods to study fault-sealing properties in the course of migration were systemically summarized. They may be characterized directly by lithological juxtaposition, clay smear and diagenesis, and indirectly the comparing the pressures and fluid properties in the walls at two apartments of a fault. In Jungaer Basin, the abnormal pressures are found in the formations beneath Badaowan or Baijantan Formation. The occurrence of the overpressure seems controlled by the stratigraphy. The rapid sedimentation, tectonic pressuring, clay sealing, chemical diagensis were considered as the principal pressuring mechanisms. The evolution of fluid pressure is influenced differently at different parts of the basin by the tectonic stresses. So the basin appears different pressure evolution cycles from each part to another during the geological history. By coupling the results of thermal evolution, pressure evolution and organic matter maturation, the area and the period of primary migration were acquired and used to determine the secondary migration time and range. The primary migration in Fengcheng Formation happened from latter Triassic to early Jurassic in the main depressions. The main period of lower-Wuerhe Formation was at latter Jurassic in Changji, Shawan and Pen-1-jing-xi Depression, and at the end of early Cretaceous in Mahu Depression. The primary migration in Badaowan and Sangonghe Formation is at the end of early-Cretaceous in Changji Depression. After then, the fluid potential of oil is calculated at the key time determined from area and time of the primary migration. Generally, fluid potential of oil is high in the depressions and low at the uplifts. Synthetically, it is recognized that the petroleum migration in the Jungaer Basin is very complex, that leads us to classify the evolution of petroleum systems in Northwestern China as a primary stage and a reformed one. The remigration of accumulated petroleum, caused by the reformation of the basin, results in the generation of multiple petroleum systems. The faults and unconformities are usually the linkers among the original petroleum systems. The Permian petroleum system in Jungaer Basin is such a multiple petroleum system. However, the Jurassic petroleum system stays still in its primary stage, thought the strong influences of the new tectonic activities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gaochentou region is located in the southwest direction of Gaochentou village in Huanghua city of Hebei province. In regionally structural position, It lies in Qikou sag In the middle part of Huanghua depression, which belongs to the east part of the south Dagang structure zone in the middle part of Huanghua depression. Its' very beneficial at regional structure in Gaochentou , and It becomes the advantage area for oil and gas gathered and preserved, Sandstone reservoir of Dongying Formation is main bearing bed .Dongying Formation in Gaochentou region of Huanghua depression is consisted of set of mudstone and sandstone interbeds by deposited delta fades . Dongying Formation can be divided into 3 members from above to below: the first member of Dongying Formation (FMDF), the second member of Dongying Formation (SMDF), and third member of Dongying Formation (TMDF). The lithology of the upper part of FMDF was consisted of mostly middle-grained and fine-grained sandstone, and it is small for the oil-bearing area of the sand bodies .The lithology of the lower part is coarse-grained sandstone bodies which are well connected between sandstone bodies of wells, and the lower part was main bed of oil production in Dongying Formation; SMDF and TMDF are consisted of larger scale set of mudstone, in which the sandbodies are lenticular and pinch out quickly, and the lithology was mostly fine sandstone and silt stone, in which there are little oil and gas .Because the reservoirs in this area are largely influenced by the factors such as lithology, fault and others, and the reservoirs have the strong,heterogeneity , there exists the problem of oil-down and water-up for vertical distribution of oil and gas bearing. It is not very clearly for the three dimension distribution of sandstone , and the geology researchs is not enough. So, it can't satisfy the need of further development and production for Gaochentou oilfield.Having the key problem of oil-down and water-up and the mechanism of the reservoir for Gaochentou area, There are as follow study works, the first, is study of the high-resolution correlation of sequence stratigraphy and sedimentary microfacies. Dongying Formation was divided into three parasequence sets and each parasequence set was divided into different amount of parasequences. FMDF, as the main oil and gas producing bed, can be divided into seven parasequences. Oil and gas are discovered in six parasequences except the seventh. On the basis of study of sedimentary microfacies, the sediments of Dongying Formation are considered deposited mainly in delta front subfacies. The microfacies types of Dongying Formation are sub-water distirbutary channel, sub-water natural bank, inter distributary channel bay, distributary channel mouth dam, and delta front mat sand.Seismic facies analysis and logging-constrained inversion technique were applied by Author for transverse prediction of sandstone reservoir. Having 4 modes of interwell single sandbodies correlation technique, Author have described distribution characteristics of sandbodies, and established geological reservoir model of Gaochentou reservoir.Author presented that the reservoirs characteristic have very strong heterogeneity ,and In the section of sandstone interlayed with mudstone,the folium sandstone interlayed with each other, and the wedge shaped sandbodies pinched out in the mudstone. So the pinch-out up sandstone trap and lenticular sandstone trap are easily formed. They are most small scale overlying pinches out in the place of slope. This article applies the concept of deep basin oil to resolve reasonably the problem of which the oil is below the water in Gaochentou area. Combined with the study of sedimentary facies, reservoir and other aspects, the mechanism and patterns of deep basin oil are studied on the basis of characteristics in Gaochentou area.On the basis of the above study, the mechanism of the oil and gas' migration and accumulation in isotropic sandstone and heterogeneous sandstone are thoroughly analyzed through experiments on physical modeling. Experiments on physical modeling show that the discrepancy between sand layers with different permeability and thickness has important influence on the direction, path, and injection layer of oil's migration. At the beginning of the injection of oil and gas in high permeability sand layer, the pressure is low, the migration resistance is small, and the oil and gas are more easily displacing the water in sand. So it can act as good transformation layer or reservoir. But at the beginning of the injection of oil and gas in sand layer with low permeability, the pressure is high, the migration resistance is big, and the oil and gas are more difficultly displacing the water in sand. So it can only act as bad or worse transformation layer or reservoir. Even if it cannot act as transformation layer or reservoir, it can act as water layer or dry layer. The discrepancy between sand layers on permeability and thickness can make discrepancy in injection of oil and gas between different layers. Consequently it leads to small amount of oil and gas injection in sand layers with low permeability. Ultimately it affects the oil's accumulation and distribution in different sand layers.At Last, combining analysis of the structure and pool forming condition, The thesis has established models of reservoir formation to predict the advantage distribution of oil and gas bearing , and put forward the prospective target It is not only of theoretical signification for explosion and importance, but also has realistic value in guiding the progressive petroleum exploration and exploitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Barrier development during the Holocene is studied using the example of the Ilha Comprida, Southeastern Brazil. Aerial photos, facies analysis, and optically stimulated luminescence dating are used to define the barrier emergence and evolution. Optically stimulated luminescence ages and facies successions indicate that the Ilha Comprida probably began as a Holocene transgressive barrier island 6000 years ago, just before the last relative sea-level maximum. Since then the barrier has progradated through the addition of curved beach ridges. Based on beach ridge alignments, six units of growth are identified with two growth directions, transverse and longitudinal. Rates of progradation with transverse growth vary from 0.13 to 4.6 m/year. Rates of longitudinal growth to NE range from 5.2 to 30 m/year. Variation in coastal progradation rates and sediment retention during the last 6000 years is compared with climate, physiography and relative sea-level changes. The physiography, represented by pre-Cenozoic hills, is the major control on sediment retention and alternation between longitudinal and transverse growth. Climate variations, such as the Little Ice Age event, apparently control the formation of ridges types: beach ridges, foredunes, and blowouts. These results allow the use of the Ilha Comprida Barrier as an example to analyze the major controls on barriers progradation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis deals with the tectonic-stratigraphic evolution of the Transitional Sequence in the Sergipe Sub-basin (the southern segment of the Sergipe-Alagoas Basin, Northeast Brazil), deposited in the time interval of the upper Alagoas/Aptian stage. Sequence boundaries and higher order internal sequences were identified, as well as the structures that affect or control its deposition. This integrated approach aimed to characterize the geodynamic setting and processes active during deposition of the Transitional Sequence, and its relations with the evolutionary tectonic stages recognized in the East Brazilian Margin basins. This subject addresses more general questions discussed in the literature, regarding the evolution from the Rift to the Drift stages, the expression and significance of the breakup unconformity, the relationships between sedimentation and tectonics at extensional settings, as well as the control on subsidence processes during this time interval. The tectonic-stratigraphic analysis of the Transitional Sequence was based on seismic sections and well logs, distributed along the Sergipe Sub-basin (SBSE). Geoseismic sections and seismic facies analysis, stratigraphic profiles and sections, were compiled through the main structural blocks of this sub-basin. These products support the depositional and tectonic-stratigraphic evolutionary models built for this sequence. The structural analysis highlighted similarities in deformation styles and kinematics during deposition of the Rift and Transitional sequences, pointing to continuing lithospheric extensional processes along a NW trend (X strain axis) until the end of deposition of the latter sequence was finished by the end of late Aptian. The late stage of extension/rifting was marked by (i) continuous (or as pulses) fault activity along the basin, controling subsidence and creation of depositional space, thereby characterizing upper crustal thinning and (ii) sagstyle deposition of the Transitional Sequence at a larger scale, reflecting the ductile stretching and thinnning of lower and sub crustal layers combined with an increasing importance of the thermal subsidence regime. Besides the late increments of rift tectonics, the Transitional Sequence is also affected by reactivation of the border faults of SBSE, during and after deposition of the Riachuelo Formation (lower section of the Transgressive Marine Sequence, of Albian age). It is possible that this reactivation reflects (through stress propagation along the newlycreated continental margin) the rifting processes still active further north, between the Alagoas Sub-basin and the Pernambuco-Paraíba Basin. The evaporitic beds of the Transitional Sequence contributed to the development of post-rift structures related to halokinesis and the continental margin collapse, affecting strata of the overlying marine sequences during the Middle Albian to the Maastrichtian, or even the Paleogene time interval. The stratigraphic analysis evidenced 5 depositional sequences of higher order, whose vertical succession indicates an upward increase of the base level, marked by deposition of continental siliciclastic systems overlain by lagunar-evaporitic and restricted marine systems, indicating that the Transitional Sequence was deposited during relative increase of the eustatic sea level. At a 2nd order cycle, the Transitional Sequence may represent the initial deposition of a Transgressive Systems Tract, whose passage to a Marine Transgressive Sequence would also be marked by the drowning of the depositional systems. At a 3rd order cycle, the sequence boundary corresponds to a local unconformity that laterally grades to a widespread correlative conformity. This boundary surface corresponds to a breakup unconformity , being equivalent to the Pre-Albian Unconformity at the SBSE and contrasting with the outstanding Pre-upper Alagoas Unconformity at the base of the Transitional Sequence; the latter is alternatively referred, in the literature, as the breakup unconformity. This Thesis supports the Pre-Albian Unconformity as marker of a major change in the (Rift-Drift) depositional and tectonic setting at SBSE, with equivalent but also diachronous boundary surfaces in other basins of the Atlantic margin. The Pre-upper Alagoas Unconformity developed due to astenosphere uplift (heating under high lithospheric extension rates) and post-dates the last major fault pulse and subsequent extensive block erosion. Later on, the number and net slip of active faults significantly decrease. At deep to ultra deep water basin segments, seaward-dipping reflectors (SDRs) are unconformably overlain by the seismic horizons correlated to the Transitional Sequence. The SDRs volcanic rocks overly (at least in part) continental crust and are tentatively ascribed to melting by adiabatic decompression of the rising astenospheric mantle. Even though being a major feature of SBSE (and possibly of other basins), the Pre-upper Alagoas Unconformity do not correspond to the end of lithospheric extension processes and beginning of seafloor spreading, as shown by the crustal-scale extensional structures that post-date the Transitional Sequence. Based on this whole context, deposition of the Transitional Sequence is better placed at a late interval of the Rift Stage, with the advance of an epicontinental sea over a crustal segment still undergoing extension. Along this segment, sedimentation was controled by a combination of thermal and mechanical subsidence. In continuation, the creation of oceanic lithosphere led to a decline in the mechanical subsidence component, extension was transferred to the mesoceanic ridge and the newly-formed continental margin (and the corresponding Marine Sequence) began to be controlled exclusively by the thermal subsidence component. Classical concepts, multidisciplinary data and new architectural and evolutionary crustal models can be reconciled and better understood under these lines