325 resultados para FUNGICIDES
Resumo:
Husk spot, caused by Pseudocercospora macadamiae is a major fungal disease of macadamia in Australia. Chemicals to control the disease are limited and frequent failure to control the disease is a major concern to growers. The overall goal of this research was to improve the chemical control strategy of P. macadamiae through the provision of fungicides with different modes of action to carbendazim, which is the current industry standard. Husk spot incidence, premature fruit abscission, kernel quality and yield were evaluated following application of different fungicide products in replicated field experiments at three different sites. Results showed significant differences in disease incidence and premature fruit abscission between fungicide treatments, field sites and years. Generally, disease incidence and premature fruit abscission on trees treated with fungicide were significantly (P < 0.05) lower than the untreated control. Pyraclostrobin conferred significantly better protection than trifloxystrobin, reducing disease severity by 70% compared with a 50% reduction by trifloxystrobin. The pyraclostrobin treatment had a similar efficacy to the current industry standard (70% reduction cf. 73% reduction by tank-mixed carbendazim and copper). Higher amounts of immature kernels occurred in the untreated control, followed by difenoconazole and trifloxystrobin. Diseased fruit accounted for 78% of premature fruit abscission, which indicates that husk spot enhances fruit abscission in macadamia. Our results suggest that pyraclostrobin provided similar efficacy to the industry standard and could, therefore, play a key role in the management of husk spot.
Resumo:
Several chemicals including strobilurins (pyraclostrobin and azoxystrobin), triazoles (difenoconazole and tebuconazole), dithiocarbamates (propineb, metiram, ziram and mancozeb) and the phthalimide chlorothalonil were evaluated in three field experiments in north Queensland, Australia, for the control of brown spot (caused by Corynespora cassiicola) and black spot (caused by Asperisporium caricae) of papaya. Chlorothalonil and pyraclostrobin were shown to be more effective than the industry standard, mancozeb, for the control of brown spot. In the black spot experiments, difenoconazole, pyraclostrobin and chlorothalonil used alone or in spray programs were as effective as, or better than, the industry standards, mancozeb and tebuconazole. Plants treated with pyraclostrobin and difenoconazole had more fruit unaffected by black spot (97% and 99% respectively) than plants treated with tebuconazole (51%), mancozeb (20%) and the untreated controls (1%). Laboratory tests also showed that A. caricae was more sensitive to difenoconazole (EC50 of 2ppm) than tebuconazole (EC50 of 14ppm). In 2007, off-label permits were obtained for chlorothalonil for control of brown spot and difenoconazole and chlorothalonil for the control of black spot of papaya.
Resumo:
Various chemical and non-chemical treatments were tested for their efficacy against damping-off in papaya seedlings caused by Pythium aphanidermatum. Three-week-old papaya seedlings were placed in a climate controlled experimental chamber and inoculated with macerated mycelium of P. aphanidermatum. Propamocarb as Previcur was found to be most effective at managing damping-off in papaya seedlings.
Resumo:
Results from the first of two artificially inoculated field experiments showed foliar applications of copper hydroxide (Blue Shield Copper) at 600 g a.i./100 L−1 (0% infected fruit), copper hydroxide + metalaxyl-M (Ridomil Gold Plus.) at 877.5 g a.i./100 L−1 (0.27%), metiram + pyraclostrobin (Aero) at 720 g a.i./100 L−1 (0.51%), chlorothalonil (Bravo WeatherStik) at 994 g a.i./100 L−1 (0.63%) and cuprous oxide (Nordox 750 WG) at 990 g a.i./100 L−1 (0.8%) of water significantly reduced the percentage of infected fruit compared to potassium phosphonate (Agri-Fos 600) at 1200 g a.i./100 L−1 (8.22%), dimethomorph (Acrobat) at 108 g a.i./100 L−1 (11.18%) and the untreated control (16%). Results from the second experiment showed fruit sprayed with copper hydroxide (Champ Dry Prill) at 300 (2.0% infected fruit), 375 (0.4%) and 450 g a.i./100 L−1 (0.6%) and metiram + pyraclostrobin (Aero) at 360 (2.8%), 480 (0.6%) and 600 g a.i./100 L−1 of water (1.0%) significantly reduced the percentage of infected fruit compared to the untreated control (19.4%). Foliar sprays of copper hydroxide at 375 g a.i./100 L−1 in rotation with chlorothalonil at 994 g a.i./100 L−1 every two weeks is now recommended to growers for controlling Phytophthora fruit rot of papaya.
Resumo:
The efficacy of chlorothalonil and paraffinic oil alone and in combinations with the registered fungicides propiconazole, tebuconazole, difenoconazole, epoxiconazole and pyrimethanil was evaluated in a field experiment over two cropping cycles in 2013 and 2014 in Northern Queensland, Australia, for control of yellow Sigatoka (caused by Mycosphaerella musicola) of banana. The predominantly applied by the banana industry treatment mancozeb with paraffinic oil was included for comparison. The results from the two cropping cycles suggested that all chemicals used with paraffinic oil were as effective or more effective than when applied with chlorothalonil, and chlorothalonil alone. Difenoconazole and epoxiconazole with paraffinic oil followed by propiconazole with paraffinic oil were the most effective treatments. Pyrimethanil and tebuconazole plus chlorothalonil were the least effective treatments. None of the chemical treatments was phytotoxic or reduced yield.
Resumo:
The sensitivity of Lagenidium, isolated from Penaeus monodon, Scylla serrata , to 34 antimycotics was determined. Effects on the development of vesicles, zoospores and mycelial growth were evaluated. Although mycoidal levels of the chemicals tested will be ideal for lethal treatment on control of the fungus, the high dose required may be lethal to the host, thus the use of mycostatic concentrations is more practical. Treatments of rearing water containing larvae, adult shrimps or crabs should be done only after preliminary tolerance experiments using at least the mycostatic dose prove to be safe for the hosts. Mycocidal doses can be used for determining disinfection doses of equipment and facilities used in rearing procedures as well as for destroying batches of infected larvae.
Resumo:
Pure cultures of Haliphthoros philippinensis, isolated from infected Penaeus monodon larvae, were exposed for 24 hours to varying concentrations of antifungal agents. The efficiency of each agent to inhibit sporulation and mycelial growth was measured. Effects on P. monodon eggs and larvae were also investigated. It is concluded that preliminary bioassay of larval tolerance to the suggested effective doses should always be made prior to prophylaxix or therapeutic applications.
Resumo:
A multiresidue gas chromatographic method for the determination of six fungicides (captan, chlorthalonil, folpet, iprodione, procymidone and vinclozolin) and one acaricide (dicofol) in still and fortified wines was developed. Solid-phase microextraction (SPME) was chosen for the extraction of the compounds from the studied matrices and tandem mass spectrometry (MS/MS) detection was used. The extraction consists in a solvent free and automated procedure and the detection is highly sensitive and selective. Good linearity was obtained with correlation coefficients of regression (R2) > 0.99 for all the compounds. Satisfactory results of repeatability and intermediate precision were obtained for most of the analytes (RSD < 20%). Recoveries from spiked wine ranged from 80.1% to 112.0%. Limits of quantification (LOQs) were considerably below the proposedmaximumresidue limits (MRLs) for these compounds in grapes and below the suggested limits for wine (MRLs/10), with the exception of captan.
Resumo:
Extensive studies have been initiated to generate enough data to register the methyl homologue (MBC-MIC, see List of Abbreviations, page 14) of benomyl (MBC-BIC) as a commercial product through a joint effort between the federal government and Canadian industry. The objective of this study, as part of the whole project, was to generate fundamental data on the physical properties of the series of benomyl homologues (MBC-MIC, MBC-EIC, MBC-PIC and MBC-BIC). These data include the half lives of these compounds in water at the pH range from 2 to 12; they ranged from 0.7 to 10. 1 hours. Standard solutions of these compounds in concentrated acid were found to be stable for at least two weeks, and in the case of MBC-MIC it was stable at least 1 month. Another major goal of this study was to determine the solubility of each compound in water at different pHs in the range of 1 to 12. The solubility of the compounds ranged from 0.6 jig/mL to 396 fig/mL. In addition, it was possible to prepare stable stock solutions at concentrations > 1 000 |ig/mL in concentrated nitric acid. Several aspects of analytical methods have been improved to accurately assess the solubility and rate of degradation of benomyl and its homologues in alkaline conditions. The determination of melting points was attempted but all compounds decomposed before melting.To complement the studies of the benomyl homologue series attempts were made to explore the presence of any relationships between the structures of the compounds and their properties. Although there were some exceptions, the compound's solubility decreased and half life increased as the molecular size increased from the methyl to the butyl analogue.
Resumo:
The allele-specific polymerase chain reaction (PCR) was used to screen for the presence of benomyl resistance, and to characterize their levels and frequencies in field populations of Venturia inaequalis during two seasons. Three hundred isolates of V. inaequalis were collected each season from infected leaves of MalusX domestica. Borkh c.v. Mcintosh. The trees used were sprayed in the year prior to collection with five applications of benomyl, its homologue Azindoyle, or water. Monoconidial isolates of V. inaequalis were grown on 2% potato dextrose agar (PDA) for four weeks. Each isolate was taken from a single lesion from a single leaf. Total genomic DNA was extracted from the four week old colonies of V. inaequalis, prepared and used as a template in PCR reactions. PCR reactions were achieved by utilizing allele-specific primers. Each primer was designed to amplify fragments from a specific allele. Primer Vin was specific for mutations conferring the ben^^"^ phenotype. It was expected to amplify a 171 bp. DNA fragment from the ben^"^ alleles only. Primers BenHR and BenMR were specific for mutations conferring the ben"" and ben'^'' phenotypes, respectively. They were expected to amplify 172 bp. and 165 bp. DNA fragments from the ben"" and ben"^" alleles, respectively. Of the 953 isolates tested, 414 (69.9%) were benomyl sensitive (ben^) and 179 (30.1%) were benomyl resistant. All the benomyl resistant alleles were ben^"", since neither the ben"" nor the ben"" alleles were detected. Frequencies of benomyl resistance were 23%, 24%, and 23% for the 1997 collections, and were 46%, 26% and 38% for the 1998 collections for benomyl, Azindoyle and water treatments, respectively. Growth assay was performed to evaluate the applicability of using PCR in monitoring benomyl resistance in fungal field populations. Tests were performed on 14 isolates representing the two phenotypes (ben^ and ben^"'' alleles) characterized by PCR. Results of those tests were in agreement with PCR results. Enzyme digestion was also used to evaluate the accuracy and reliability of PCR products. The mutation associated with the ben^"'' phenotype creates a unique site for the endonuclease enzyme Bsh^236^ allowing the use of enzyme digestion. Isolates characterized by PCR as ben^'^'^ alleles had this restriction site for the SsA7l2361 enzyme. The most time consuming aspect of this study was growing fungal isolates on culture media for DNA extraction. In addition, the risk of contamination or losing the fungus during growth processes was relatively high. A technique for extracting DNA directly from lesions on leaves has been used (Luck and Gillings 1 995). In order to apply this technique in experiments designed to monitor fungicide resistance, a lesion has to be homogeneous for fungicide sensitivity. For this purpose, PCR protocol was used to determine lesion homogeneity. One hundred monoconidial isolates of V. inaequalis from 10 lesions (10-conidia/ lesion) were tested for their phenotypes with respect to benomyl sensitivity. Conidia of six lesions were homogeneous, while conidia of the remaining lesions were mixtures of ben^ and ben^ phenotypes. Neither the ben" nor the ben' phenotype was detected.
Resumo:
Twenty-eight field experiments on sandy-loam soils in the UK (1982-2003) are reviewed by relating the extension of the green area duration of the flag leaf (GLADF) by fungicides to effects on yield and quality of winter wheat. Over all experiments mean grain yield = 8.85t ha(-1) at 85% DM. With regards quality, mean values were: thousand grain weight (TGW) = 44.5 g; specific weight (SWT) = 76.9 kg hl(-1); crude protein concentration (CP (N x 5.7)) = 12.5 % DM; Hagberg falling number (HFN) = 285 s; and sodium dodecyl sulphate (SDS)-sedimentation volume = 69ml. For each day (d) that fungicides increased GLADF there were associated average increases in yield (0.144 1 ha(-1) d(-1), se 0.0049, df = 333), TGW (0.56 gd(-1), se = 0.017) and SWT (0.22 kg hl(-1) d(-1), se 0.011). Some curvature was evident in all these relationships. When GLADF was delayed beyond 700 degrees Cd after anthesis, as was possible in cool wet seasons, responses were curtailed, or less reliable. Despite this apparent terminal sink limitation, fungicide effects on sink size, eg endosperm cell numbers or maximum water mass per grain, were not prerequisites for large effects on grain yield, TGW or SWT. Fungicide effects on CP were variable. Although the average response of CP was negative (-0.029%DM/d; se = 0.00338), this depended on cultivar and disease controlled. Controlling biotrophs such as rusts, (Puccinia spp.) tended to increase CP, whereas controlling a more necrotrophic pathogen (Septoria tritici) usually reducedCP. Irrespective of pathogen controlled, delaying senescence of the flag leaf was associated with increased nitrogen yields in the grain (averaging 2.24 kg N ha-1 d(-1), se = 0.0848) due to both increased N uptake into the above ground crop, and also more efficient remobilisation of N from leaf laminas. When sulphur availability appeared to be adequate, fungicide x cultivar interactions were similar on S as for CP, although N:S ratios tended to decline (i.e. improve for bread making) when S. tritici was controlled. On average, SDS-sedimentation volume declined (-0. 18 ml/d, se = 0.027) with increased GLADF, broadly commensurate with the average effect on CP. Hagberg falling number decreased as fungicide increased GLADF (-2.73 s/d, se = 0.178), indicating an increase in alpha-amylase activity.