973 resultados para FUNGAL LACCASES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laccase has been immobilized on the carbon nanotubes modified glassy carbon electrode surface by adsorption. As-prepared laccase retains good electrocatalytic activity to oxygen reduction by using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) as the mediator. It can be used as a biosensor for the determination of catechol with broad linear range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hydrophobic carbon nanotubes-ionic liquid (CNTs-IL) get forms a stable modified film on hydrophobic graphite electrode surface. Laccase immobilized on the CNTs-IL gel film modified electrode shows good thermal stability and enhanced electrochemical catalytic ability. The optimal bioactivity occurs with increasing temperature and this optimum is 20 degrees C higher in comparison to free laccase. The improvement of laccase thermal stability may be due to the microenvironment of hydrophobic CNTs-IL gel on graphite electrode surface. On the other hand, the sensitive detection of oxygen has been achieved due to the feasibility of oxygen reduction by both of laccase and nanocomposite of CNTs-IL gel. Furthermore, the laccase hybrid nanocomposite also shows the fast electrochemical response and high sensitivity to the inhibitors of halide ions with the approximate IC50 of 0.01, 4.2 and 87.5 mM for the fluoride, chloride and bromide ions, respectively. It implies the feasibility of laccase modified electrode as an inhibition biosensor to detect the modulators of laccase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study has identified an actinomycete culture (S. psammoticus) which was capable of producing all the three major ligninolytic enzymes. The study revealed that least explored mangrove regions are potential sources for the isolation of actinomycetes with novel characteristics. The laccase production by the strain in SmF and SSF was found to be much higher than the reported values. The growth of the organism was favoured by alkaline pH and salinity of the medium. The enzyme also exhibited novel characteristics such as activity and stability at alkaline pH and salt tolerance. These two characters are quite significant from the industrial point of view making the enzyme an ideal candidate for industrial applications. Many of the application studies to date are focused on enzymes from fungal sources. However, the fungal laccases, which are mostly acidic in nature, could not be used universally for all application purposes especially, for the treatment of effluents from different industries, largely due to the alkaline nature of the effluents. Under such situations the enzymes from organisms like S. psammoticus with wide pH range could play a better role than the fungal counterparts. In the present study, the ability of the isolated strain and laccase in the degradation of dyes and phenolic compounds was successfully proved. The reusability of the immobilized enzyme system made the entire treatment process inexpensive. Thus it can be concluded from the present study that the laccase from this organism could be hopefully employed for the eco-friendly treatment of dye or phenol containing industrial effluents from various sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basidiomycetous white-rot fungi are the only organisms that can efficiently decompose all the components of wood. Moreover, white-rot fungi possess the ability to mineralize recalcitrant lignin polymer with their extracellular, oxidative lignin-modifying enzymes (LMEs), i.e. laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), and versatile peroxidase (VP). Within one white-rot fungal species LMEs are typically present as several isozymes encoded by multiple genes. This study focused on two effi cient lignin-degrading white-rot fungal species, Phlebia radiata and Dichomitus squalens. Molecular level knowledge of the LMEs of the Finnish isolate P. radiata FBCC43 (79, ATCC 64658) was complemented with cloning and characterization of a new laccase (Pr-lac2), two new LiP-encoding genes (Pr-lip1, Pr-lip4), and Pr-lip3 gene that has been previously described only at cDNAlevel. Also, two laccase-encoding genes (Ds-lac3, Ds-lac4) of D. squalens were cloned and characterized for the first time. Phylogenetic analysis revealed close evolutionary relationships between the P. radiata LiP isozymes. Distinct protein phylogeny for both P. radiata and D. squalens laccases suggested different physiological functions for the corresponding enzymes. Supplementation of P. radiata liquid culture medium with excess Cu2+ notably increased laccase activity and good fungal growth was achieved in complex medium rich with organic nitrogen. Wood is the natural substrate of lignin-degrading white-rot fungi, supporting production of enzymes and metabolites needed for fungal growth and the breakdown of lignocellulose. In this work, emphasis was on solid-state wood or wood-containing cultures that mimic the natural growth conditions of white-rot fungi. Transcript analyses showed that wood promoted expression of all the presently known LME-encoding genes of P. radiata and laccase-encoding genes of D. squalens. Expression of the studied individual LME-encoding genes of P. radiata and D. squalens was unequal in transcript quantities and apparently time-dependent, thus suggesting the importance of several distinct LMEs within one fungal species. In addition to LMEs, white-rot fungi secrete other compounds that are important in decomposition of wood and lignin. One of these compounds is oxalic acid, which is a common metabolite of wood-rotting fungi. Fungi produce also oxalic-acid degrading enzymes of which the most widespread is oxalate decarboxylase (ODC). However, the role of ODC in fungi is still ambiguous with propositions from regulation of intra and extracellular oxalic acid levels to a function in primary growth and concomitant production of ATP. In this study, intracellular ODC activity was detected in four white-rot fungal species, and D. squalens showed the highest ODC activity upon exposure to oxalic acid. Oxalic acid was the most common organic acid secreted by the ODC-positive white-rot fungi and the only organic acid detected in wood cultures. The ODC-encoding gene Ds-odc was cloned from two strains of D. squalens showing the first characterization of an odc-gene from a white-rot polypore species. Biochemical properties of the D. squalens ODC resembled those described for other basidiomycete ODCs. However, the translated amino acid sequence of Ds-odc has a novel N-terminal primary structure with a repetitive Ala-Ser-rich region of ca 60 amino acid residues in length. Expression of the Ds-odc transcripts suggested a constitutive metabolic role for the corresponding ODC enzyme. According to the results, it is proposed that ODC may have an essential implication for the growth and basic metabolism of wood-decaying fungi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to characterise and quantify the fungal fragment propagules derived and released from several fungal species (Penicillium, Aspergillus niger and Cladosporium cladosporioides) using different generation methods and different air velocities over the colonies. Real time fungal spore fragmentation was investigated using an Ultraviolet Aerodynamic Particle Sizer (UVASP) and a Scanning Mobility Particle Sizer (SMPS). The study showed that there were significant differences (p < 0.01) in the fragmentation percentage between different air velocities for the three generation methods, namely the direct, the fan and the fungal spore source strength tester (FSSST) methods. The percentage of fragmentation also proved to be dependant on fungal species. The study found that there was no fragmentation for any of the fungal species at an air velocity ≤ 0.4 m/s for any method of generation. Fluorescent signals, as well as mathematical determination also showed that the fungal fragments were derived from spores. Correlation analysis showed that the number of released fragments measured by the UVAPS under controlled conditions can be predicted on the basis of the number of spores, for Penicillium and Aspergillus niger, but not for Cladosporium cladosporioides. The fluorescence percentage of fragment samples was found to be significantly different to that of non-fragment samples (p < 0.0001) and the fragment sample fluorescence was always less than that of the non-fragment samples. Size distribution and concentration of fungal fragment particles were investigated qualitatively and quantitatively, by both UVAPS and SMPS, and it was found that the UVAPS was more sensitive than the SMPS for measuring small sample concentrations, and the results obtained from the UVAPS and SMAS were not identical for the same samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concern regarding the health effects of indoor air quality has grown in recent years, due to the increased prevalence of many diseases, as well as the fact that many people now spend most of their time indoors. While numerous studies have reported on the dynamics of aerosols indoors, the dynamics of bioaerosols in indoor environments are still poorly understood and very few studies have focused on fungal spore dynamics in indoor environments. Consequently, this work investigated the dynamics of fungal spores in indoor air, including fungal spore release and deposition, as well as investigating the mechanisms involved in the fungal spore fragmentation process. In relation to the investigation of fungal spore dynamics, it was found that the deposition rates of the bioaerosols (fungal propagules) were in the same range as the deposition rates of nonbiological particles and that they were a function of their aerodynamic diameters. It was also found that fungal particle deposition rates increased with increasing ventilation rates. These results (which are reported for the first time) are important for developing an understanding of the dynamics of fungal spores in the air. In relation to the process of fungal spore fragmentation, important information was generated concerning the airborne dynamics of the spores, as well as the part/s of the fungi which undergo fragmentation. The results obtained from these investigations into the dynamics of fungal propagules in indoor air significantly advance knowledge about the fate of fungal propagules in indoor air, as well as their deposition in the respiratory tract. The need to develop an advanced, real-time method for monitoring bioaerosols has become increasingly important in recent years, particularly as a result of the increased threat from biological weapons and bioterrorism. However, to date, the Ultraviolet Aerodynamic Particle Sizer (UVAPS, Model 3312, TSI, St Paul, MN) is the only commercially available instrument capable of monitoring and measuring viable airborne micro-organisms in real-time. Therefore (for the first time), this work also investigated the ability of the UVAPS to measure and characterise fungal spores in indoor air. The UVAPS was found to be sufficiently sensitive for detecting and measuring fungal propagules. Based on fungal spore size distributions, together with fluorescent percentages and intensities, it was also found to be capable of discriminating between two fungal spore species, under controlled laboratory conditions. In the field, however, it would not be possible to use the UVAPS to differentiate between different fungal spore species because the different micro-organisms present in the air may not only vary in age, but may have also been subjected to different environmental conditions. In addition, while the real-time UVAPS was found to be a good tool for the investigation of fungal particles under controlled conditions, it was not found to be selective for bioaerosols only (as per design specifications). In conclusion, the UVAPS is not recommended for use in the direct measurement of airborne viable bioaerosols in the field, including fungal particles, and further investigations into the nature of the micro-organisms, the UVAPS itself and/or its use in conjunction with other conventional biosamplers, are necessary in order to obtain more realistic results. Overall, the results obtained from this work on airborne fungal particle dynamics will contribute towards improving the detection capabilities of the UVAPS, so that it is capable of selectively monitoring and measuring bioaerosols, for which it was originally designed. This work will assist in finding and/or improving other technologies capable of the real-time monitoring of bioaerosols. The knowledge obtained from this work will also be of benefit in various other bioaerosol applications, such as understanding the transport of bioaerosols indoors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA corresponding to a transcript induced in culture by N starvation, was identified in Colletotrichum gloeosporioides by a differential hybridisation strategy. The cDNA comprised 905 bp and predicted a 215 aa protein; the gene encoding the cDNA was termed CgDN24. No function for CgDN24 could be predicted by database homology searches using the cDNA sequence and no homologues were found in the sequenced fungal genomes. Transcripts of CgDN24 were detected in infected leaves of Stylosanthes guianensis at stages of infection that corresponded with symptom development. The CgDN24 gene was disrupted by homologous recombination and this led to reduced radial growth rates and the production of hyphae with a hyperbranching phenotype. Normal sporulation was observed, and following conidial inoculation of S. guianensis, normal disease development was obtained. These results demonstrate that CgDN24 is necessary for normal hyphal development in axenic culture but dispensable for phytopathogenicity. © 2005 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly effective (more than 99.9%) inactivation of a pathogenic fungus Candida albicans commonly found in oral, respiratory, digestive, and reproduction systems of a human body using atmospheric-pressure plasma jets sustained in He+ O2 gas mixtures is reported. The inactivation is demonstrated in two fungal culture configurations with open (Petri dish without a cover) and restricted access to the atmosphere (Petri dish with a cover) under specific experimental conditions. It is shown that the fungal inactivation is remarkably more effective in the second configuration. This observation is supported by the scanning and transmission electron microscopy of the fungi before and after the plasma treatment. The inactivation mechanism explains the experimental observations under different experimental conditions and is consistent with the reports by other authors. The results are promising for the development of advanced health care applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biolistic delivery of transforming DNA into fungal genomes, especially when performed on uninucleate haploid conidia, has proven successful in bypassing the time-consuming repetitive purification of protoplasts used for the widely applied polyethylene glycol-mediated method. Biolistic transformation is also relatively quick compared to other available methods and provides a high percentage of stable transformants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A survey for mycotoxins and fungal damage in maize (Zea mays L.) grown during 1982 in Far North Queensland is reported. This season had a rainfall distribution which was typical for the reglon. The 293 samples examined came from 11 1 farms in eight maize-growing districts. The samples were first subjected to rapid screening tests for fungal damage. Aflatoxins B1, B2, G1, G2 ochratoxin A, T-2 toxin, and sterigmatocystin were not detected, but zearalenone was found in 85% of the samples. The concentrations of zearalenone were correlated with the extent of Gibberella zeae cob rot as indicated by the proportion (up to 2%) of kernels in each sample having a reddish-purple discoloration. In four samples the zearalenone concentration exceeded 1 mg kg-1, but the mean ¦ s.d. (n = 293) concentration in all samples was 0.17 ¦ 0.225 mg kg-1. Concentrations were highest in districts with the highest rainfall during the period of maize growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sago starch is an important source of dietary carbohydrates in lowland Papua New Guinea. Over the past 30 years there have been sporadic reports of severe illness following consumption of sago starch. A common assumption is that fungal metabolites might be associated with the illness, leading to the need for a more thorough investigation of the mycoflora of sago starch. Sago starch was collected from areas of high sago consumption in Papua New Guinea for fungal analysis (69 samples). Storage methods and duration were recorded at the time of collection and pH on arrival at the laboratory. Yeasts were isolated from all samples except two, ranging from 1.2 × 103 to 8.3 × 107 cfu/g. Moulds were isolated from 65 of the 69 samples, ranging from 1.0 × 102 to 3.0 × 106 cfu/g. Of 44 samples tested for ergosterol content, 42 samples showed the presence of fungal biomass. Statistical analyses indicated that sago starch stored for greater than five weeks yielded significantly higher ergosterol content and higher numbers of moulds than sago stored for less than five weeks. The method of storage was also shown to influence mould numbers with storage in natural woven fibre containers returning significantly greater numbers than present in other storage methods tested. Potentially mycotoxigenic genera of moulds including Aspergillus and Penicillium were commonly isolated from sago starch, and as such storage factors that influence the growth of these and other filamentous fungi might contribute to the safety of traditional sago starch in PNG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis, is enigmatic because it occurs globally in both declining and apparently healthy (non-declining) amphibian populations. This distribution has fueled debate concerning whether, in sites where it has recently been found, the pathogen was introduced or is endemic. In this study, we addressed the molecular population genetics of a global collection of fungal strains from both declining and healthy amphibian populations using DNA sequence variation from 17 nuclear loci and a large fragment from the mitochondrial genome. We found a low rate of DNA polymorphism, with only two sequence alleles detected at each locus, but a high diversity of diploid genotypes. Half of the loci displayed an excess of heterozygous genotypes, consistent with a primarily clonal mode of reproduction. Despite the absence of obvious sex, genotypic diversity was high (44 unique genotypes out of 59 strains). We provide evidence that the observed genotypic variation can be generated by loss of heterozygosity through mitotic recombination. One strain isolated from a bullfrog possessed as much allelic diversity as the entire global sample, suggesting the current epidemic can be traced back to the outbreak of a single clonal lineage. These data are consistent with the current chytridiomycosis epidemic resulting from a novel pathogen undergoing a rapid and recent range expansion. The widespread occurrence of the same lineage in both healthy and declining populations suggests that the outcome of the disease is contingent on environmental factors and host resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological control of weeds has been carried out in Fiji since 1911, when the seed-fly Ophiomyia lantanae was introduced in an attempt to control Lantana camara. In 1988, the thrips Liothrips mikaniae was introduced from Trinidad into the Solomon Islands in an attempt to undertake biocontrol of Mikania micrantha (mikania) in the Pacific. A small colony of the thrips was subsequently taken from the Solomon Islands to the Kerevat Lowlands Agricultural Experimental Station in New Britain, Papua New Guinea (PNG). Now two decades later and for the first time, a pathogenic rust fungus has been imported for use against mikania, one of Fiji’s and the Pacific’s worst invasive weeds.