986 resultados para FUNCTIONAL ROLES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The capacity to distinguish colony members from strangers is a key component in social life. In social insects, this extends to the brood and involves discrimination of queen eggs. Chemical substances communicate colony affiliation for both adults and brood; thus, in theory, all colony members should be able to recognize fellow nestmates. In this study, we investigate the ability of Dinoponera quadriceps workers to discriminate nestmate and non-nestmate eggs based on cuticular hydrocarbon composition. We analyzed whether cuticular hydrocarbons present on the eggs provide cues of discrimination. The results show that egg recognition in D. quadriceps is related to both age and the functional role of workers. Brood care workers were able to distinguish nestmate from non-nestmate eggs, while callow and forager workers were unable to do so.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromyographic (EMG) studies have shown that a large number of trunk muscles are recruited during axial rotation. The functional roles of these trunk muscles in axial rotation are multiple and have not been well investigated. In addition, there is no information on the coupling torque at different exertion levels during axial rotation. The aim of the study was to investigate the functional roles of rectus abdominis. external oblique. internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus during isometric right and left axial rotation at 100%, 70%, 50% and 30% maximum voluntary contractions (MVC) in a standing position. The coupling torques in sagittal and coronal planes were measured during axial rotation to examine the coupling nature of torque at different levels of exertions. Results showed that the coupled sagittal torque switches from nil to flexion at maximum exertion of axial rotation. Generally, higher EMG activities were shown at higher exertion levels for all the trunk muscles. Significant differences in activity between the right and left axial rotation exertions were demonstrated in external oblique, internal oblique, latissimus dorsi and iliocostalis lumborum while no difference was shown in rectus abdominis and multifidus. These results demonstrated the different functional roles of trunk muscles during axial rotation. This is important considering that the abdominal and back muscles not only produce torque but also maintain the spinal posture and stability during axial rotation exertions. The changing coupling torque direction in the sagittal plane when submaximal to maximal exertions were compared may indicate the complex nature of the kinetic coupling of trunk muscles. (C) 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Na,K-ATPase is an oligomeric protein composed of alpha subunits, beta subunits and FXYD proteins. The catalytic alpha subunit hydrolyzes ATP and transports the cations. Increasing experimental evidence suggest that beta subunits and FXYD proteins essentially contribute to the variable physiological needs of Na,K-ATPase function in different tissues. RECENT FINDINGS: Beta subunits have a crucial role in the structural and functional maturation of Na,K-ATPase and modulate its transport properties. The chaperone function of the beta subunit is essential, for example, in the formation of tight junctions and cell polarity. Recent studies suggest that beta subunits also have inherent functions, which are independent of Na,K-ATPase activity and which may be involved in cell-cell adhesiveness and in suppression of cell motility. As for FXYD proteins, they modulate Na,K-ATPase activity in a tissue-specific way, in some cases in close cooperation with posttranslational modifications such as phosphorylation. SUMMARY: A better understanding of the multiple functional roles of the accessory subunits of Na,K-ATPase is crucial to appraise their influence on physiological processes and their implication in pathophysiological states

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs) which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The four basic helix-loop-helix myogenic transcription factors, myogenin, Myf5, MRF4, and MyoD are critical for embryonic skeletal muscle development. Myogenin is necessary for the terminal differentiation of myoblasts into myofibers during embryogenesis, but little is known about the roles played by myogenin in adult skeletal muscle function and metabolism. Furthermore, while metabolism is a well-studied physiological process, how it is regulated at the transcriptional level remains poorly understood. In this study, my aim was to determine the function of myogenin in adult skeletal muscle metabolism, exercise capacity, and regeneration. To investigate this, I utilized a mouse strain harboring the Myogflox allele and a Cre recombinase transgene, enabling the efficient deletion of myogenin in the adult mouse. Myogflox/flox mice were stressed physically through involuntary treadmill running and by breeding them with a strain harboring the Duchenne’s muscular dystrophy (DMDmdx) allele. Surprisingly, Myog-deleted animals exhibited an enhanced capacity for exercise, running farther and faster than their wild-type counterparts. Increased lactate production and utilization of glucose as a fuel source indicated that Myog-deleted animals exhibited an increased glycolytic flux. Hypoglycemic Myog-deleted mice no longer possessed the ability to outrun their wild-type counterparts, implying the ability of these animals to further deplete their glucose reserves confers their enhanced exercise capacity. Moreover, Myog-deleted mice exhibited an enhanced response to long-term exercise training. The mice developed a greater proportion of type 1 oxidative muscle fibers, and displayed increased levels of succinate dehydrogenase activity, indicative of increased oxidative metabolism. Mdx:Myog-deleted mice exhibited a similar phenotype, outperforming their mdx counterparts, although lagging behind wild-type animals. The morphology of muscle tissue from mdx:Myog-deleted mice appears to mimic that of mdx animals, indicating that myogenin is dispensable for adult skeletal muscle regeneration. Through global gene expression profiling and quantitative (q)RT-PCR, I identified a unique set of putative myogenin-dependent genes involved in regulating metabolic processes. These data suggest myogenin’s functions during adulthood are distinctly different than those during embryogenesis, and myogenin acts as a high-level transcription factor regulating metabolic activity in adult skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some rhizobia induce a hydrogen (H2)-uptake system with a [NiFe] hydrogenase along with nitrogenase to recover part of the energy lost as H2. Biosynthesis of NiFe hydrogenases is a process that ocurrs in the cytoplasm, where a number of auxiliary proteins (products of hup and hyp genes) are required to synthesize and insert the metal cofactors into the enzyme structural units. Although HypC is expressed in all hydrogenase systems, HupF and HupK are found only in bacteria that express the hydrogenase in the presence of oxygen (O2). Co-purification experiments have demonstrated HypC-HupK and HypC-HupL interactions. Results have shown that some conserved residues from HypC and HupK play a protective role of hydrogenase against the presence of O2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drosophila Enabled (Ena) was initially identified as a dominant genetic suppressor of mutations in the Abelson tyrosine kinase and, more recently, as a member of the Ena/human vasodilator-stimulated phosphoprotein (VASP) family of proteins. We have used genetic, biochemical, and cell biological approaches to demonstrate the functional relationship between Ena and human VASP. In addition, we have defined the roles of Ena domains identified as essential for its activity in vivo. We have demonstrated that VASP rescues the embryonic lethality associated with loss of Ena function in Drosophila and have shown that Ena, like VASP, is associated with actin filaments and focal adhesions when expressed in cultured cells. To define sequences that are central to Ena function, we have characterized the molecular lesions present in two lethal ena mutant alleles that affected the Ena/VASP homology domain 1 (EVH1) and EVH2. A missense mutation that resulted in an amino acid substitution in the EVH1 domain eliminated in vitro binding of Ena to the cytoskeletal protein zyxin, a previously reported binding partner of VASP. A nonsense mutation that resulted in a C-terminally truncated Ena protein lacking the EVH2 domain failed to form multimeric complexes and exhibited reduced binding to zyxin and the Abelson Src homology 3 domain. Our analysis demonstrates that Ena and VASP are functionally homologous and defines the conserved EVH1 and EVH2 domains as central to the physiological activity of Ena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several membrane-associating signals, including covalently linked fatty acids, are found in various combinations at the N termini of signaling proteins. The function of these combinations was investigated by appending fatty acylated N-terminal sequences to green fluorescent protein (GFP). Myristoylated plus mono/dipalmitoylated GFP chimeras and a GFP chimera containing a myristoylated plus a polybasic domain were localized similarly to the plasma membrane and endosomal vesicles, but not to the nucleus. Myristoylated, nonpalmitoylated mutant chimeric GFPs were localized to intracellular membranes, including endosomes and the endoplasmic reticulum, and were absent from the plasma membrane, the Golgi, and the nucleus. Dually palmitoylated GFP was localized to the plasma membrane and the Golgi region, but it was not detected in endosomes. Nonacylated GFP chimeras, as well as GFP, showed cytosolic and nuclear distribution. Our results demonstrate that myristoylation is sufficient to exclude GFP from the nucleus and associate with intracellular membranes, but plasma membrane localization requires a second signal, namely palmitoylation or a polybasic domain. The similarity in localization conferred by the various myristoylated and palmitoylated/polybasic sequences suggests that biophysical properties of acylated sequences and biological membranes are key determinants in proper membrane selection. However, dual palmitoylation in the absence of myristoylation conferred significant differences in localization, suggesting that multiple palmitoylation sites and/or enzymes may exist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cap is widely accepted to be the site of gravity sensing in roots because removal of the cap abolishes root curvature. Circumstantial evidence favors the columella cells as the gravisensory cells because amyloplasts (and often other cellular components) are polarized with respect to the gravity vector. However, there has been no functional confirmation of their role. To address this problem, we used laser ablation to remove defined cells in the cap of Arabidopsis primary roots and quantified the response of the roots to gravity using three parameters: time course of curvature, presentation time, and deviation from vertical growth. Ablation of the peripheral cap cells and tip cells did not alter root curvature. Ablation of the innermost columella cells caused the strongest inhibitory effect on root curvature without affecting growth rates. Many of these roots deviated significantly from vertical growth and had a presentation time 6-fold longer than the controls. Among the two inner columella stories, the central cells of story 2 contributed the most to root gravitropism. These cells also exhibited the largest amyloplast sedimentation velocities. Therefore, these results are consistent with the starch-statolith sedimentation hypothesis for gravity sensing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Passive electroreception is a complex and specialised sense found in a large range of aquatic vertebrates primarily designed for the detection of weak bioelectric fields. Particular attention has traditionally focused on cartilaginous fishes, but a range of teleost and non-teleost fishes from a diversity of habitats have also been examined. As more species are investigated, it has become apparent that the role of electroreception in fishes is not restricted to locating prey, but is utilised in other complex behaviours. This paper presents the various functional roles of passive electroreception in non-electric fishes, by reviewing much of the recent research on the detection of prey in the context of differences in species' habitat (shallow water, deep-sea, freshwater and saltwater). A special case study on the distribution and neural groupings of ampullary organs in the omnihaline bull shark, Carcharhinus leucas, is also presented and reveals that prey-capture, rather than navigation, may be an important determinant of pore distribution. The discrimination between potential predators and conspecifics and the role of bioelectric stimuli in social behaviour is discussed, as is the ability to migrate over short or long distances in order to locate environmentally favourable conditions. The various theories proposed regarding the importance and mediation of geomagnetic orientation by either an electroreceptive and/or a magnetite-based sensory system receives particular attention. The importance of electroreception to many species is emphasised by highlighting what still remains to be investigated, especially with respect to the physical, biochemical and neural properties of the ampullary organs and the signals that give rise to the large range of observed behaviours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - Aquaporin (AQP) water channels are best known as passive transporters of water that are vital for water homeostasis. Scope of review - AQP knockout studies in whole animals and cultured cells, along with naturally occurring human mutations suggest that the transport of neutral solutes through AQPs has important physiological roles. Emerging biophysical evidence suggests that AQPs may also facilitate gas (CO2) and cation transport. AQPs may be involved in cell signalling for volume regulation and controlling the subcellular localization of other proteins by forming macromolecular complexes. This review examines the evidence for these diverse functions of AQPs as well their physiological relevance. Major conclusions - As well as being crucial for water homeostasis, AQPs are involved in physiologically important transport of molecules other than water, regulation of surface expression of other membrane proteins, cell adhesion, and signalling in cell volume regulation. General significance - Elucidating the full range of functional roles of AQPs beyond the passive conduction of water will improve our understanding of mammalian physiology in health and disease. The functional variety of AQPs makes them an exciting drug target and could provide routes to a range of novel therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since its identification in the 1990s, the RNA interference (RNAi) pathway has proven extremely useful in elucidating the function of proteins in the context of cells and even whole organisms. In particular, this sequence-specific and powerful loss-of-function approach has greatly simplified the study of the role of host cell factors implicated in the life cycle of viruses. Here, we detail the RNAi method we have developed and used to specifically knock down the expression of ezrin, an actin binding protein that was identified by yeast two-hybrid screening to interact with the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) spike (S) protein. This method was used to study the role of ezrin, specifically during the entry stage of SARS-CoV infection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A central problem in visual perception concerns how humans perceive stable and uniform object colors despite variable lighting conditions (i.e. color constancy). One solution is to 'discount' variations in lighting across object surfaces by encoding color contrasts, and utilize this information to 'fill in' properties of the entire object surface. Implicit in this solution is the caveat that the color contrasts defining object boundaries must be distinguished from the spurious color fringes that occur naturally along luminance-defined edges in the retinal image (i.e. optical chromatic aberration). In the present paper, we propose that the neural machinery underlying color constancy is complemented by an 'error-correction' procedure which compensates for chromatic aberration, and suggest that error-correction may be linked functionally to the experimentally induced illusory colored aftereffects known as McCollough effects (MEs). To test these proposals, we develop a neural network model which incorporates many of the receptive-field (RF) profiles of neurons in primate color vision. The model is composed of two parallel processing streams which encode complementary sets of stimulus features: one stream encodes color contrasts to facilitate filling-in and color constancy; the other stream selectively encodes (spurious) color fringes at luminance boundaries, and learns to inhibit the filling-in of these colors within the first stream. Computer simulations of the model illustrate how complementary color-spatial interactions between error-correction and filling-in operations (a) facilitate color constancy, (b) reveal functional links between color constancy and the ME, and (c) reconcile previously reported anomalies in the local (edge) and global (spreading) properties of the ME. We discuss the broader implications of these findings by considering the complementary functional roles performed by RFs mediating color-spatial interactions in the primate visual system. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE Interferon (IFN) signaling plays a crucial role in autoimmunity. Genetic variation in interferon regulatory factor 5 (IRF5), a major regulator of the type I interferon induction, has been associated with risk of developing several autoimmune diseases. In the current study we aimed to evaluate whether three sets of correlated IRF5 genetic variants, independently associated with SLE and with different functional roles, are involved in uveitis susceptibility and its clinical subphenotypes. METHODS Three IRF5 polymorphisms, rs2004640, rs2070197 and rs10954213, representative of each group, were genotyped using TaqMan® allelic discrimination assays in a total of 263 non-anterior uveitis patients and 724 healthy controls of Spanish origin. RESULTS A clear association between two of the three analyzed genetic variants, rs2004640 and rs10954213, and the absence of macular edema was observed in the case/control analysis (P FDR =5.07E-03, OR=1.48, CI 95%=1.14-1.92 and P FDR =3.37E-03, OR=1.54, CI 95%=1.19-2.01, respectively). Consistently, the subphenotype analysis accordingly with the presence/absence of this clinical condition also reached statistical significance (rs2004640: P=0.037, OR=0.69, CI 95%=0.48-0.98; rs10954213: P=0.030, OR=0.67, CI 95%=0.47-0.96), thus suggesting that both IRF5 genetic variants are specifically associated with the lack of macular edema in uveitis patients. CONCLUSION Our results clearly showed for the first time that two functional genetic variants of IRF5 may play a role in the development of macular edema in non-anterior uveitis patients. Identifying genetic markers for macular edema could lead to the possibility of developing novel treatments or preventive therapies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Gene duplication is the primary source of new genes with novel or altered functions. It is known that duplicates may obtain these new functional roles by evolving divergent expression patterns and/or protein functions after the duplication event. Here, using yeast (Saccharomyces cerevisiae) as a model organism, we investigate a previously little considered mode for the functional diversification of duplicate genes: subcellular adaptation of encoded proteins. RESULTS: We show that for 24-37% of duplicate gene pairs derived from the S. cerevisiae whole-genome duplication event, the two members of the pair encode proteins that localize to distinct subcellular compartments. The propensity of yeast duplicate genes to evolve new localization patterns depends to a large extent on the biological function of their progenitor genes. Proteins involved in processes with a wider subcellular distribution (for example, catabolism) frequently evolved new protein localization patterns after duplication, whereas duplicate proteins limited to a smaller number of organelles (for example, highly expressed biosynthesis/housekeeping proteins with a slow rate of evolution) rarely relocate within the cell. Paralogous proteins evolved divergent localization patterns by partitioning of ancestral localizations ('sublocalization'), but probably more frequently by relocalization to new compartments ('neolocalization'). We show that such subcellular reprogramming may occur through selectively driven substitutions in protein targeting sequences. Notably, our data also reveal that relocated proteins functionally adapted to their new subcellular environments and evolved new functional roles through changes of their physico-chemical properties, expression levels, and interaction partners. CONCLUSION: We conclude that protein subcellular adaptation represents a common mechanism for the functional diversification of duplicate genes.