935 resultados para FULL-LENGTH


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The genetic diversity of the human immunodeficiency virus type 1 (HIV-1) is critical to lay the groundwork for the design of successful drugs or vaccine. In this study we aimed to characterize and define the molecular prevalence of HIV-1 subclade F1 currently circulating in Sao Paulo, Brazil. Methods: A total of 36 samples were selected from 888 adult patients residing in Sao Paulo who had previously been diagnosed in two independent studies in our laboratory as being infected with subclade F1 based on pol subgenomic fragment sequencing. Proviral DNA was amplified from the purified genomic DNA of all 36 blood samples by 5 fragments overlapping PCR followed by direct sequencing. Sequence data were obtained from the 5 fragments of pure subclade F1 and phylogenetic trees were constructed and compared with previously published sequences. Subclades F1 that exhibited mosaic structure with other subtypes were omitted from any further analysis Results: Our methods of fragment amplification and sequencing confirmed that only 5 sequences inferred from pol region as subclade F1 also holds true for the genome as a whole and, thus, estimated the true prevalence at 0.56%. The results also showed a single phylogenetic cluster of the Brazilian subclade F1 along with non-Brazilian South American isolates in both subgenomic and the full-length genomes analysis with an overall intrasubtype nucleotide divergence of 6.9%. The nucleotide differences within the South American and Central African F1 strains, in the C2-C3 env, were 8.5% and 12.3%, respectively. Conclusion: All together, our findings showed a surprisingly low prevalence rate of subclade F1 in Brazil and suggest that these isolates originated in Central Africa and subsequently introduced to South America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify novel cytokine-related genes, we searched the set of 60,770 annotated RIKEN mouse cDNA clones (FANTOM2 clones), using keywords such as cytokine itself or cytokine names (such as interferon, interleukin, epidermal growth factor, fibroblast growth factor, and transforming growth factor). This search produced 108 known cytokines and cytokine-related products such as cytokine receptors, cytokine-associated genes, or their products (enhancers, accessory proteins, cytokine-induced genes). We found 15 clusters of FANTOM2 clones that are candidates for novel cytokine-related genes. These encoded products with strong sequence similarity to guanylate-binding protein (GBP-5), interleukin-1 receptor-associated kinase 2 (IRAK-2), interleukin 20 receptor alpha isoform 3, a member of the interferon-inducible proteins of the Ifi 200 cluster, four members of the membrane-associated family 1-8 of interferon-inducible proteins, one p27-like protein, and a hypothetical protein containing a Toll/Interleukin receptor domain. All four clones representing novel candidates of gene products from the family contain a novel highly conserved cross-species domain. Clones similar to growth factor-related products included transforming growth factor beta-inducible early growth response protein 2 (TIEG-2), TGFbeta-induced factor 2, integrin beta-like 1, latent TGF-binding protein 4S, and FGF receptor 4B. We performed a detailed sequence analysis of the candidate novel genes to elucidate their likely functional properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of common diseases such as cancer, allergy, diabetes, or heart disease are characterized by complex genetic traits, in which genetic and environmental components contribute to disease susceptibility. Our knowledge of the genetic factors underlying most of such diseases is limited. A major goal in the post-genomic era is to identify and characterize disease susceptibility genes and to use this knowledge for disease treatment and prevention. More than 500 genes are conserved across the invertebrate and vertebrate genomes. Because of gene conservation, various organisms including yeast, fruitfly, zebrafish, rat, and mouse have been used as genetic models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study whether flavivirus RNA packaging is dependent on RNA replication, we generated two DNA-based Kunjin virus constructs, pKUN1 and pKUN1dGDD, allowing continuous production of replicating (wild-type) and nonreplicating (with a deletion of the NS5 gene RNA-polymerase motif GDD) full-length Kunjin virus RNAs, respectively, via nuclear transcription by cellular RNA polymerase II. As expected, transfection of pKUN1 plasmid DNA into BHK cells resulted in the recovery of secreted infectious Kunjin virions. Transfection of pKUN1dGDD DNA into BHK cells, however, did not result in the recovery of any secreted virus particles containing encapsidated dGDD RNA, despite an apparent accumulation of this RNA in cells demonstrated by Northern blot analysis and its efficient translation demonstrated by detection of correctly processed labeled structural proteins (at least prM and E) both in cells and in the culture fluid using coimmunoprecipitation analysis with anti-E antibodies. In contrast, when dGDD RNA was produced even in much smaller amounts in PKUN1dGDD DNA-transfected repBHK cells (where it was replicated via complementation), it was packaged into secreted virus particles, Thus, packaging of defective Kunjin virus RNA could occur only when it was replicated. Our results with genome-length Kunjin virus RNA and the results with poliovirus replicon RNA (C, I. Nugent et al,, J, Virol, 73:427-435, 1999), both demonstrating the necessity for the RNA to be replicated before it can be packaged, strongly suggest the existence of a common mechanism for minimizing amplification and transmission of defective RNAs among the quasispecies in positive-strand RNA viruses, This mechanism may thus help alleviate the high-copy error rate of RNA-dependent RNA polymerases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A plasmid DNA directing transcription of the infectious full-length RNA genome of Kunjin (KUN) virus in vivo from a mammalian expression promoter was used to vaccinate mice intramuscularly. The KUN viral cDNA encoded in the plasmid contained the mutation in the NS1 protein (Pro-250 to Leu) previously shown to attenuate KUN virus in weanling mice. KUN virus was isolated from the blood of immunized mice 3-4 days after DNA inoculation, demonstrating that infectious RNA was being transcribed in vivo; however, no symptoms of virus-induced disease were observed. By 19 days postimmunization, neutralizing antibody was detected in the serum of immunized animals. On challenge with lethal doses of the virulent New York strain of West Nile (WN) or wild-type KUN virus intracerebrally or intraperitoneally, mice immunized with as little as 0.1-1 mug of KUN plasmid DNA were solidly protected against disease. This finding correlated with neutralization data in vitro showing that serum from KUN DNA-immunized mice neutralized KUN and WN,viruses with similar efficiencies. The results demonstrate that delivery of an attenuated but replicating KUN virus via a plasmid DNA vector may provide an effective vaccination strategy against virulent strains of WN virus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a streamlined reverse transcription-polymerase chain reaction methodology for constructing full-length cDNA libraries of trypanosomatids on the basis of conserved sequences located at the 5' and 3'ends of trans-spliced mRNAs. The amplified cDNA corresponded to full-length messengers and was amenable to in vitro expression. Fractionated libraries could be rapidly constructed in a plasmid vector by the TA cloning method (Invitrogen). We believe this is useful when there are concerns over the use of restriction enzymes and phage technology as well as in cases where expression of proteins in their native conformation is desired.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome p450s (cyp450s) are a family of structurally related proteins, with diverse functions, including steroid synthesis and breakdown of toxins. This paper reports the full-length sequence of a novel cyp450 gene, the first to be isolated from the tropical freshwater snail Biomphalaria glabrata, an important intermediate host of Schistosoma mansoni. The nucleotide sequence is 2291 bp with a predicted amino acid sequence of 584aa. The sequence demonstrates conserved cyp450 structural motifs, but is sufficiently different from previously reported cyp450 sequences to be given a new classification, CYP320A1. Initially identified as down-regulated in partially resistant snails in response to S. mansoni infection, amplification of this gene using RT-PCR in both totally resistant or susceptible snail lines when exposed to infection, and all tissues examined, suggests ubiquitous expression. Characterization of the first cyp450 from B. glabrata is significant in understanding the evolution of these metabolically important proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of sequences generated by genome projects has increased exponentially, but gene characterization has not followed at the same rate. Sequencing and analysis of full-length cDNAs is an important step in gene characterization that has been used nowadays by several research groups. In this work, we have selected Schistosoma mansoni clones for full-length sequencing, using an algorithm that investigates the presence of the initial methionine in the parasite sequence based on the positions of alignment start between two sequences. BLAST searches to produce such alignments have been performed using parasite expressed sequence tags produced by Minas Gerais Genome Network against sequences from the database Eukaryotic Cluster of Orthologous Groups (KOG). This procedure has allowed the selection of clones representing 398 proteins which have not been deposited as S. mansoni complete CDS in any public database. Dedicated sequencing of 96 of such clones with reads from both 5' and 3' ends has been performed. These reads have been assembled using PHRAP, resulting in the production of 33 full-length sequences that represent novel S. mansoni proteins. These results shall contribute to construct a more complete view of the biology of this important parasite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hepatitis B virus (HBV) is among the leading causes of chronic hepatitis, cirrhosis and hepatocellular carcinoma. In Brazil, genotype A is the most frequent, followed by genotypes D and F. Genotypes B and C are found in Brazil exclusively among Asian patients and their descendants. The aim of this study was to sequence the entire HBV genome of a Caucasian patient infected with HBV/C2 and to infer the origin of the virus based on sequencing analysis. The sequence of this Brazilian isolate was grouped with four other sequences described in China. The sequence of this patient is the first complete genome of HBV/C2 reported in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the histone-like nucleoid structuring protein (H-NS) family play roles both as architectural proteins and as modulators of gene expression in Gram-negative bacteria. The H-NS protein participates in modulatory processes that respond to environmental changes in osmolarity, pH, or temperature. H-NS oligomerization is essential for its activity. Structural models of different truncated forms are available. However, high-resolution structural details of full-length H-NS and its DNA-bound state have largely remained elusive. We report on progress in characterizing the biologically active H-NS oligomers with solid-state NMR. We compared uniformly ((13)C,(15)N)-labeled ssNMR preparations of the isolated N-terminal region (H-NS 1-47) and full-length H-NS (H-NS 1-137). In both cases, we obtained ssNMR spectra of good quality and characteristic of well-folded proteins. Analysis of the results of 2D and 3D (13)C-(13)C and (15)N-(13)C correlation experiments conducted at high magnetic field led to assignments of residues located in different topological regions of the free full-length H-NS. These findings confirm that the structure of the N-terminal dimerization domain is conserved in the oligomeric full-length protein. Small changes in the dimerization interface suggested by localized chemical shift variations between solution and solid-state spectra may be relevant for DNA recoginition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Huntington's disease (HD) is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotypephenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expressionof mutant huntingtin in a striatal cell line from the HdhQ111/Q111 knock-in mouse. Results: We screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1¿171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 < 15 ¿M, including gossypol, gambogic acid, juglone, celastrol, sanguinarine and anthralin. Of these, both juglone and celastrol were effective in reversing the abnormal cellular localization of full-length mutant huntingtin observed in mutant HdhQ111/Q111 striatal cells. Conclusions: At least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that alter in vitro aggregation is a viable approach for defining potential therapeutic compounds that may act on the deleterious conformational property of full-length mutant huntingtin.