983 resultados para FREQUENCY-SPECIFIC BERA
Resumo:
Inappropriate response tendencies may be stopped via a specific fronto/basal ganglia/primary motor cortical network. We sought to characterize the functional role of two regions in this putative stopping network, the right inferior frontal gyrus (IFG) and the primary motor cortex (M1), using electocorticography from subdural electrodes in four patients while they performed a stop-signal task. On each trial, a motor response was initiated, and on a minority of trials a stop signal instructed the patient to try to stop the response. For each patient, there was a greater right IFG response in the beta frequency band ( approximately 16 Hz) for successful versus unsuccessful stop trials. This finding adds to evidence for a functional network for stopping because changes in beta frequency activity have also been observed in the basal ganglia in association with behavioral stopping. In addition, the right IFG response occurred 100-250 ms after the stop signal, a time range consistent with a putative inhibitory control process rather than with stop-signal processing or feedback regarding success. A downstream target of inhibitory control is M1. In each patient, there was alpha/beta band desynchronization in M1 for stop trials. However, the degree of desynchronization in M1 was less for successfully than unsuccessfully stopped trials. This reduced desynchronization on successful stop trials could relate to increased GABA inhibition in M1. Together with other findings, the results suggest that behavioral stopping is implemented via synchronized activity in the beta frequency band in a right IFG/basal ganglia network, with downstream effects on M1.
Resumo:
This study was designed to investigate the feasibility of applying tone-ABRs in the nursery and neonatal intensive care unit (NICU), and to provide normative tone-ABR data from neonates. Normative tone-ABR latency data were determined. The study obtained intensity series of tone-ABRs from thirty preterm neonates and twenty fullterm neonates who had confirmed normal peripheral auditory function after passing both an OAE and ABR screening examination. ABRs were collected in response to 500, 1500, and 4000 Hz tone bursts at 70, 50, 30, and 20 dB nHL. Mean wave V latencies were compared between groups, ears, and by gender. Responses to tone bursts of 20 and 30 dB nHL were detected in 97% and 100% of all ears respectively, in addition to responses to the higher-intensity stimuli. Preterm neonates` ABRs showed significantly longer latencies than those of the full-term infants. Tone-ABR evaluation was found to be both feasible and reliable as a measure of auditory function in neonates.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objectives: To determine the effect of maternal smoking during pregnancy on transient evoked otoacoustic emissions levels in neonates. Methods: This was a cross-sectional study investigating neonates in the maternity ward of a university hospital in the city of Sao Paulo, Brazil. A total of 418 term neonates without prenatal or perinatal complications were evaluated. The neonates were divided into two groups: a study group, which comprised 98 neonates born to mothers who had smoked during pregnancy; and a control group, which comprised 320 neonates born to mothers who had not. In order to compare the two ears and the two groups in terms of the mean overall response and the mean transient evoked otoacoustic emissions in response to acoustic stimuli delivered at different frequencies, we used analysis of variance with repeated measures. Results: The mean overall response and the mean frequency-specific response levels were lower in the neonates in the study group (p < 0.001). The mean difference between the groups was 2.47 dB sound pressure level (95% confidence interval: 1.47-3.48). Conclusions: Maternal smoking during pregnancy had a negative effect on cochlear function, as determined by otoacoustic emissions testing. Therefore, pregnant women should be warned of this additional hazard of smoking. It is important that smoking control be viewed as a public health priority and that strategies for treating tobacco dependence be devised. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The main issue regarding pediatric audiology diagnosis is determining procedures to configure reliable results which can be used to predict frequency-specific hearing thresholds. Aim: To investigate the correlation between auditory steady-state response (ASSR) with other tests in children with sensorineural hearing loss. Methods: Prospective cross-sectional contemporary cohort study. Twenty-three children (ages 1 to 7; mean, 3 years old) were submitted to ASSR, behavioral audiometry, click audiometry brain stem response (ABR), tone burst ABR, and predicting hearing level from the acoustic reflex. Results: the correlation between behavioral thresholds and ASSR was (0.70- 0.93), for the ABR tone burst it was (0.73 -0.93), for the ABR click it was (0.83-0.89) only at 2k and 4 kHz. The match between the ASSR and the hearing threshold prediction rule was considered moderate. Conclusion: there was a significant correlation between the ASSR and audiometry, as well as between ABR click (2k and 4 kHz) and for the ABR tone burst. The acoustic reflex can be used to add information to diagnosis in children.
Resumo:
Background: Glutathione (GSH) dysregulation at the gene, protein and functional levels observed in schizophrenia patients, and schizophrenia-like anomalies in GSH deficit experimental models, suggest that genetic glutathione synthesis impairments represent one major risk factor for the disease (Do et al., 2009). In a randomized, double blind, placebo controlled, add-on clinical trial of 140 patients, the GSH precursor N-Acetyl-Cysteine (NAC, 2g/day, 6 months) significantly improved the negative symptoms and reduced sideeffects due to antipsychotics (Berk et al., 2008). In a subset of patients (n=7), NAC (2g/day, 2 months, cross-over design) also improved auditory evoked potentials, the NMDA-dependent mismatch negativity (Lavoie et al, 2008). Methods: To determine whether increased GSH levels would modulate the topography of functional brain connectivity, we applied a multivariate phase synchronization (MPS) estimator (Knyazeva et al, 2008) to dense-array EEGs recorded during rest with eyes closed at the protocol onset, the point of crossover, and at its end. Results: The whole-head imaging revealed a specific synchronization landscape in NAC compared to placebo condition. In particular, NAC increased MPS over frontal and left temporal regions in a frequency-specific manner. The topography and direction of MPS changes were similar and robust in all 7 patients. Moreover, these changes correlated with the changes in the Liddle's score of disorganization, thus linking EEG synchronization to the improvement of the clinical picture. Conclusions: The data suggest an important pathway towards new therapeutic strategies that target GSH dysregulation in schizophrenia. They also show the utility of MPS mapping as a marker of treatment efficacy.
Resumo:
Background: Glutathione (GSH) dysregulation at the gene, protein and functional levels observed in schizophrenia patients, and schizophrenia-like anomalies in GSH deficit experimental models, suggest that genetic glutathione synthesis impairments represent one major risk factor for the disease (Do et al., 2009). In a randomized, double blind, placebo controlled, add-on clinical trial of 140 patients, the GSH precursor N-Acetyl-Cysteine (NAC, 2 g/day, 6 months) significantly improved the negative symptoms and reduced side-effects due to antipsychotics (Berk et al., 2008). In a subset of patients (n=7), NAC (2 g/day, 2 months, cross-over design) also improved auditory evoked potentials, the NMDAdependent mismatch negativity (Lavoie et al, 2008). Methods: To determine whether increased GSH levels would modulate the topography of functional brain connectivity, we applied a multivariate phase synchronization (MPS) estimator (Knyazeva et al, 2008) to dense-array EEGs recorded during rest with eyes closed at the protocol onset, the point of crossover, and at its end. Phase synchronization phenomena are appealing because they can be associated to synchronized phases while the amplitudes stay uncorrelated. MPS measures the degree of interactions among the recorded neuronal oscillators by quantifiying to what extent they behave like a macro-oscillator (i.e. the oscillators are phase synchronous). To assess the whole-head synchronization topography, we computed the MPS sensor-wise over the cluster of locations defined by the sensor itself and he surrounding ones belonging to its second-order neighborhood (Carmeli et al, 2005). Such a cluster spans about 12 cm on average. Abstracts 245 Results: The whole-head imaging revealed a specific synchronization landscape in NAC compared to placebo condition. In particular, NAC increased MPS over frontal and left temporal regions in a frequency-specific manner. Importantly, the topography and direction of MPS changes were similar and robust in all 7 patients. Moreover, these changes correlated with the changes in the Liddle's score of disorganization (Liddle, 1987) thus linking EEG synchronization to the improvement of clinical picture. Discussion: The data suggest an important pathway towards new therapeutic strategies that target GSH dysregulation in schizophrenia. They also show the utility of MPS mapping as a marker of treatment efficacy.
Resumo:
Schizophrenia is often considered as a dysconnection syndrome in which, abnormal interactions between large-scale functional brain networks result in cognitive and perceptual deficits. In this article we apply the graph theoretic measures to brain functional networks based on the resting EEGs of fourteen schizophrenic patients in comparison with those of fourteen matched control subjects. The networks were extracted from common-average-referenced EEG time-series through partial and unpartial cross-correlation methods. Unpartial correlation detects functional connectivity based on direct and/or indirect links, while partial correlation allows one to ignore indirect links. We quantified the network properties with the graph metrics, including mall-worldness, vulnerability, modularity, assortativity, and synchronizability. The schizophrenic patients showed method-specific and frequency-specific changes especially pronounced for modularity, assortativity, and synchronizability measures. However, the differences between schizophrenia patients and normal controls in terms of graph theory metrics were stronger for the unpartial correlation method.
Resumo:
Four experiments investigated perception of major and minor thirds whose component tones were sounded simultaneously. Effects akin to categorical perception of speech sounds were found. In the first experiment, musicians demonstrated relatively sharp category boundaries in identification and peaks near the boundary in discrimination tasks of an interval continuum where the bottom note was always an F and the top note varied from A to A flat in seven equal logarithmic steps. Nonmusicians showed these effects only to a small extent. The musicians showed higher than predicted discrimination performance overall, and reaction time increases at category boundaries. In the second experiment, musicians failed to consistently identify or discriminate thirds which varied in absolute pitch, but retained the proper interval ratio. In the last two experiments, using selective adaptation, consistent shifts were found in both identification and discrimination, similar to those found in speech experiments. Manipulations of adapting and test showed that the mechanism underlying the effect appears to be centrally mediated and confined to a frequency-specific level. A multistage model of interval perception, where the first stages deal only with specific pitches may account for the results.
Resumo:
Recently transcranial electric stimulation (tES) has been widely used as a mean to modulate brain activity. The modulatory effects of tES have been studied with the excitability of primary motor cortex. However, tES effects are not limited to the site of stimulation but extended to other brain areas, suggesting a need for the study of functional brain networks. Transcranial alternating current stimulation (tACS) applies sinusoidal current at a specified frequency, presumably modulating brain activity in a frequency-specific manner. At a behavioural level, tACS has been confirmed to modulate behaviour, but its neurophysiological effects are still elusive. In addition, neural oscillations are considered to reflect rhythmic changes in transmission efficacy across brain networks, suggesting that tACS would provide a mean to modulate brain networks. To study neurophysiological effects of tACS, we have been developing a methodological framework by combining transcranial magnetic stimulation (TMS), EEG and tACS. We have developed the optimized concurrent tACS-EEG recording protocol and powerful artefact removal method that allow us to study neurophysiological effects of tACS. We also established the concurrent tACS-TMS-EEG recording to study brain network connectivity while introducing extrinsic oscillatory activity by tACS. We show that tACS modulate brain activity in a phase-dependent manner. Our methodological advancement will open an opportunity to study causal role of oscillatory brain activity in neural transmissions in cortical brain networks.
Resumo:
An experimental procedure was developed using the Brainstem Evoked Response (BER) electrophysiological technique to assess the effect of neurotoxic substances on the auditory system. The procedure utilizes Sprague-Dawley albino rats who have had dural electrodes implanted in their skulls, allowing neuroelectric evoked potentials to be recorded from their brainstems. Latency and amplitude parameters derived from the evoked potentials help assess the neuroanatomical integrity of the auditory pathway in the brainstem. Moreover, since frequency-specific auditory stimuli are used to evoke the neural responses, additional audiometric information is obtainable. An investigation on non-exposed control animals shows the BER threshold curve obtained by tests at various frequencies very closely approximates that obtained by behavioral audibility tests. Thus, the BER appears to be a valid measure of both functional and neuroanatomical integrity of the afferent auditory neural pathway.^ To determine the usefulness of the BER technique in neurobehavioral toxicology research, a known neurotoxic agent, Pb, was studied. Female Sprague-Dawley rats were dosed for 45 days with low levels of Pb acetate in their drinking water, after which BER recordings were obtained. The Pb dosages were determined from the findings of an earlier pilot study. One group of 6 rats received normal tap water, one group of 7 rats received a solution of 0.1% Pb, and another group of 7 rats received a solution of 0.2% Pb. After 45 days, the three groups exhibited blood Pb levels of 4.5 (+OR-) 0.43 (mu)g/100 ml, 37.8 (+OR-) 4.8 (mu)g/100 ml and 47.3 (+OR-) 2.7 (mu)g/100 ml, respectively.^ The results of the BER recording indicated evoked response waveform latency abnormalities in both the Pb-treated groups when midrange frequency (8 kHz to 32 kHz) stimuli were used. For the most part, waveform amplitudes did not vary significantly from control values. BER recordings obtained after a 30-day recovery period indicated the effects seen in the 0.1% Pb group had disappeared. However, those anomalies exhibited by the 0.2% Pb group either remained or increased in number. This outcome indicates a longer lasting or possibly irreversible effect on the auditory system from the higher dose of Pb. The auditory pathway effect appears to be in the periphery, at the level of the cochlea or the auditory (VIII) nerve. The results of this research indicate the BER technique is a valuable and sensitive indicator of low-level toxic effects on the auditory system.^
Resumo:
In the last decade we have seen an exponential growth of functional imaging studies investigating multiple aspects of language processing. These studies have sparked an interest in applying some of the paradigms to various clinically relevant questions, such as the identification of the cortical regions mediating language function in surgical candidates for refractory epilepsy. Here we present data from a group of adult control participants in order to investigate the potential of using frequency specific spectral power changes in MEG activation patterns to establish lateralisation of language function using expressive language tasks. In addition, we report on a paediatric patient whose language function was assessed before and after a left hemisphere amygdalo-hippocampectomy. Our verb generation task produced left hemisphere decreases in beta-band power accompanied by right hemisphere increases in low beta-band power in the majority of the control group, a previously unreported phenomenon. This pattern of spectral power was also found in the patient's post-surgery data, though not her pre-surgery data. Comparison of pre and post-operative results also provided some evidence of reorganisation in language related cortex both inter- and intra-hemispherically following surgery. The differences were not limited to changes in localisation of language specific cortex but also changes in the spectral and temporal profile of frontal brain regions during verb generation. While further investigation is required to establish concordance with invasive measures, our data suggest that the methods described may serve as a reliable lateralisation marker for clinical assessment. Furthermore, our findings highlight the potential utility of MEG for the investigation of cortical language functioning in both healthy development and pathology.
Resumo:
This thesis was focused on theoretical models of synchronization to cortical dynamics as measured by magnetoencephalography (MEG). Dynamical systems theory was used in both identifying relevant variables for brain coordination and also in devising methods for their quantification. We presented a method for studying interactions of linear and chaotic neuronal sources using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in terms of their location, temporal dynamics and possible interactions. Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of functional integration and segregation. In the case of interacting dissimilar systems, relevant coordination phenomena involved generalized and phase synchronization, which were often intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at different frequencies and their boundaries were marked through oscillation death. The macroscopic mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at their boundaries. These results question existing models of Event Related Synchronization and Desynchronization. We re-examined the concept of the steady-state evoked response following an AM stimulus. We showed that very little variability in the AM following response could be accounted by system noise. We presented a methodology for detecting local and global nonlinear interactions from MEG data in order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM responses. Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found different frequency distributions in induced gamma oscillations for different spatial stimuli, which was suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not observe the characteristic-3/2 power-law scaling in the distribution of interburst intervals. Further, this distribution was only seldom significantly different to the one obtained in surrogate data, where nonlinear structure was destroyed. In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in conjunction with developments in magnetoencephalography may facilitate a mapping between levels of description int he brain. this may potentially represent a major advancement in neuroscience.