997 resultados para FOLDING MODEL
Resumo:
Nonlocal interactions are an intrinsically quantum phenomenon. In this work we point out that, in the context of heavy ions, such interactions can be studied through the refractive elastic scattering of these systems at intermediate energies. We show that most of the observed energy dependence of the local equivalent bare potential arises from the exchange nonlocality. The nonlocality parameter extracted from the data was found to be very close to the one obtained from folding models. The effective mass of the colliding, heavy-ion, system was found to be close to the nucleon effective mass in nuclear matter.
Resumo:
Structure and folding of membrane proteins are important issues in molecular and cell biology. In this work new approaches are developed to characterize the structure of folded, unfolded and partially folded membrane proteins. These approaches combine site-directed spin labeling and pulse EPR techniques. The major plant light harvesting complex LHCIIb was used as a model system. Measurements of longitudinal and transversal relaxation times of electron spins and of hyperfine couplings to neighboring nuclei by electron spin echo envelope modulation(ESEEM) provide complementary information about the local environment of a single spin label. By double electron electron resonance (DEER) distances in the nanometer range between two spin labels can be determined. The results are analyzed in terms of relative water accessibilities of different sites in LHCIIb and its geometry. They reveal conformational changes as a function of micelle composition. This arsenal of methods is used to study protein folding during the LHCIIb self assembly and a spatially and temporally resolved folding model is proposed. The approaches developed here are potentially applicable for studying structure and folding of any protein or other self-assembling structure if site-directed spin labeling is feasible and the time scale of folding is accessible to freeze-quench techniques.
Resumo:
The Qaidam Basin constitutes a major portion of the northeastern Tibetan Plateau, and an understanding of its tectonic development will help decipher how the Tibetan Plateau was formed. It is shown that Late Cretaceous–Paleocene deposits of the western Qaidam Basin can be well correlated with their counterparts of the southwestern Tarim Basin, implying that the two regions were originally connected or were in the same depositional basin during that period of time. The Qaidam Basin commenced subsiding due to crustal shortening in the Eocene, and it has subsequently evolved into an independent basin since the Miocene. The main depocenter was noticeably persistent in the middle of the western Qaidam Basin from Eocene to Miocene time, and then it shifted to the east. On the basis of spatial stratigraphic correlation and restoration of sedimentary processes, we surmise that there existed a proto–Qaidam Basin during the Paleogene, where the Suhai and Kumukol Basins represent its northern and southern margins, respectively. The Suhai and Kumukol Basins were subsequently isolated from the Qaidam Basin as a result of basinward thrusting in basin-margin areas. It is shown that the western Qaidam Basin experienced three distinct stages: the first stage was characterized by a simple synclinal depression; the second stage was marked by occurrence of reverse faults at inflection points of the megafold and continuous subsidence in the middle of the basin; and the third stage featured intrabasinal deformation and uplift. The eastern Qaidam Basin underwent a diverse evolution and became the main depositional area in the Quaternary. It is suggested that the Qaidam Basin should be generated as a result of crustal buckling or folding, manifesting itself as a synclinal depression. The crustal folding model can account for a number of observations, including localization of the depocenter in the middle of the basin, nearly concomitant deformation on the south and north sides of the Qaidam Basin, occurrence of major high-angle reverse faults at basin margins, and generation of adjacent intermontane Suhai and Kumukol Basins. A tectonic model is accordingly advanced to illustrate Cenozoic tectonics of the Qaidam Basin.
Resumo:
Realistic coupled-channel calculation results for the (18)[O] + (58,60,64)Ni systems in the bombarding energy range 34.5 <= E(Lab) <= 6-5 MeV are presented. The overall agreement with existing experimental data is quite good. Our calculations predict an unexpected fusion suppression for above-barrier energies, with an important contribution of the two neutron ((18)O, (16)O) transfer channel couplings. The sub-barrier fusion enhancement and the above barrier suppression, predicted by the calculations, are consistent with the nuclear structure of the Ni region. Comparisons with recently reported similar effects in reactions induced by the (6)He projectile are discussed. (C) 2009 Elsevier B.V. All rights reserved.
An imaginary potential with universal normalization for dissipative processes in heavy-ion reactions
Resumo:
In this work we present new coupled channel calculations with the Sao Paulo potential (SPP) as the bare interaction, and an imaginary potential with system and energy independent normalization that has been developed to take into account dissipative processes in heavy-ion reactions. This imaginary potential is based on high-energy nucleon interaction in nuclear medium. Our theoretical predictions for energies up to approximate to 100 MeV/nucleon agree very well with the experimental data for the p, n + nucleus, (16)O + (27)Al, (16)O + (60)Ni, (58)Ni + (124)Sn, and weakly bound projectile (7)Li + (120)Sn systems. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Northern Apennines (NA) chain is the expression of the active plate margin between Europe and Adria. Given the low convergence rates and the moderate seismic activity, ambiguities still occur in defining a seismotectonic framework and many different scenarios have been proposed for the mountain front evolution. Differently from older models that indicate the mountain front as an active thrust at the surface, a recently proposed scenario describes the latter as the frontal limb of a long-wavelength fold (> 150 km) formed by a thrust fault tipped around 17 km at depth, and considered as the active subduction boundary. East of Bologna, this frontal limb is remarkably very straight and its surface is riddled with small, but pervasive high- angle normal faults. However, west of Bologna, some recesses are visible along strike of the mountain front: these perturbations seem due to the presence of shorter wavelength (15 to 25 km along strike) structures showing both NE and NW-vergence. The Pleistocene activity of these structures was already suggested, but not quantitative reconstructions are available in literature. This research investigates the tectonic geomorphology of the NA mountain front with the specific aim to quantify active deformations and infer possible deep causes of both short- and long-wavelength structures. This study documents the presence of a network of active extensional faults, in the foothills south and east of Bologna. For these structures, the strain rate has been measured to find a constant throw-to-length relationship and the slip rates have been compared with measured rates of erosion. Fluvial geomorphology and quantitative analysis of the topography document in detail the active tectonics of two growing domal structures (Castelvetro - Vignola foothills and the Ghiardo plateau) embedded in the mountain front west of Bologna. Here, tilting and river incision rates (interpreted as that long-term uplift rates) have been measured respectively at the mountain front and in the Enza and Panaro valleys, using a well defined stratigraphy of Pleistocene to Holocene river terraces and alluvial fan deposits as growth strata, and seismic reflection profiles relationships. The geometry and uplift rates of the anticlines constrain a simple trishear fault propagation folding model that inverts for blind thrust ramp depth, dip, and slip. Topographic swath profiles and the steepness index of river longitudinal profiles that traverse the anti- clines are consistent with stratigraphy, structures, aquifer geometry, and seismic reflection profiles. Available focal mechanisms of earthquakes with magnitude between Mw 4.1 to 5.4, obtained from a dataset of the instrumental seismicity for the last 30 years, evidence a clear vertical separation at around 15 km between shallow extensional and deeper compressional hypocenters along the mountain front and adjacent foothills. In summary, the studied anticlines appear to grow at rates slower than the growing rate of the longer- wavelength structure that defines the mountain front of the NA. The domal structures show evidences of NW-verging deformation and reactivations of older (late Neogene) thrusts. The reconstructed river incision rates together with rates coming from several other rivers along a 250 km wide stretch of the NA mountain front and recently available in the literature, all indicate a general increase from Middle to Late Pleistocene. This suggests focusing of deformation along a deep structure, as confirmed by the deep compressional seismicity. The maximum rate is however not constant along the mountain front, but varies from 0.2 mm/yr in the west to more than 2.2 mm/yr in the eastern sector, suggesting a similar (eastward-increasing) trend of the apenninic subduction.
Resumo:
A non-I-domain integrin, α4β1, recognizes vascular cell adhesion molecule 1 (VCAM-1) and the IIICS portion of fibronectin. To localize regions of α4 critical for ligand binding, we swapped several predicted loops within or near the putative ligand-binding site of α4 (which spans repeats 2–5 of the seven N-terminal repeats) with the corresponding regions of α5. Swapping residues 112–131 in repeat 2, or residues 237–247 in repeat 4, completely blocked adhesion to immobilized VCAM-1 and connecting segment 1 (CS-1) peptide. However, swapping residues 40–52 in repeat 1, residues 151–164 in repeat 3, or residues 282–288 (which contain a putative cation binding motif) in repeat 5 did not affect or only slightly reduced adhesion to these ligands. The binding of several function-blocking antibodies is blocked by swapping residues 112–131, 151–164, and 186–191 (which contain previously identified residues critical for ligand binding, Tyr-187 and Gly-190). These results are consistent with the recently published β-propeller folding model of the integrin α4 subunit [Springer, T. A. (1997) Proc. Natl. Acad. Sci. USA 94, 65–72], in which seven four-stranded β-sheets are arranged in a torus around a pseudosymmetric axis. The regions of α4 critical for ligand binding are adjacent to each other and are located in the upper face, the predicted ligand-binding site, of the β-propeller model, although they are not adjacent in the primary structure.
Resumo:
The molecular mechanism of helix nucleation in peptides and proteins is not yet understood and the question of whether sharp turns in the polypeptide backbone serve as nuclei for protein folding has evoked controversy1,2. A recent study of the conformation of a tetrapeptide containing the stereochemically constrained residue alpha-aminoisobutyric acid, both in solution and the solid state, yielded a structure consisting of two consecutive beta-turns, leading to an incipient 310 helical conformation3,4. This led us to speculate that specific tri- and tetra-peptide sequences may indeed provide a helical twist to the amino-terminal segment of helical regions in proteins and provide a nucleation site for further propagation. The transformation from a 310 helical structure to an alpha-helix should be facile and requires only small changes in the phi and psi conformational angles and a rearrangement of the hydrogen bonding pattern5. If such a mechanism is involved then it should be possible to isolate an incipient 310 helical conformation in a tripeptide amide or tetrapeptide sequence, based purely on the driving force derived from short-range interactions. We have synthesised and studied the model peptide pivaloyl-Pro-Pro-Ala-NHMe (compound I) and provide here spectroscopic evidence for a 310 helical conformation in compound I.
Resumo:
The various types of chain folding and possible intraloop as well as interloop base pairing in human telomeric DNA containing d(TTAG(3)) repeats have been investigated by model-building, molecular mechanics, and molecular dynamics techniques. Model-building and molecular mechanics studies indicate that it is possible to build a variety of energetically favorable folded-back structures with the two TTA loops on same side and the 5' end thymines in the two loops forming TATA tetrads involving a number of different intraloop as well as interloop A:T pairing schemes. In these folded-back structures, although both intraloop and interloop Watson-Crick pairing is feasible, no structure is possible with interloop Hoogsteen pairing. MD studies of representative structures indicate that the guanine-tetraplex stem is very rigid and, while the loop regions are relatively much more flexible, most of the hydrogen bonds remain intact throughout the 350-ps in vacuo simulation. The various possible TTA loop structures, although they are energetically similar, have characteristic inter proton distances, which could give rise to unique cross-peaks in two-dimensional nuclear Overhauser effect spectroscopy (NOESY) experiments. These folded-back structures with A:T pairings in the loop region help in rationalizing the data from chemical probing and other biochemical studies on human telomeric DNA.
Resumo:
Protein folding is a relatively fast process considering the astronomical number of conformations in which a protein could find itself. Within the framework of a lattice model, we show that one can design rapidly folding sequences by assigning the strongest attractive couplings to the contacts present in a target native state, Our protein design can be extended to situations with both attractive and repulsive contacts. Frustration is minimized by ensuring that all the native contacts are again strongly attractive. Strikingly, this ensures the inevitability of folding and accelerates the folding process by an order of magnitude, The evolutionary implications of our findings are discussed.
Resumo:
Folding of Ubiquitin (Ub), a functionally important protein found in eukaryotic organisms, is investigated at low and neutral pH at different temperatures using simulations of the coarse-grained self-organized-polymer model with side chains (SOP-SC). The melting temperatures (T-m's), identified with the peaks in the heat capacity curves, decrease as pH decreases, in qualitative agreement with experiments. The calculated radius of gyration, showing dramatic variations with pH, is in excellent agreement with scattering experiments. At T-m Ub folds in a two-state manner at low and neutral pH. Clustering analysis of the conformations sampled in equilibrium folding trajectories at T-m with multiple transitions between the folded and unfolded states, shows a network of metastable states connecting the native and unfolded states. At low and neutral pH, Ub folds with high probability through a preferred set of conformations resulting in a pH-dependent dominant folding pathway. Folding kinetics reveal that Ub assembly at low pH occurs by multiple pathways involving a combination of nucleation-collapse and diffusion collision mechanism. The mechanism by which Ub folds is dictated by the stability of the key secondary structural elements responsible for establishing long-range contacts and collapse of Ub. Nucleation collapse mechanism holds if the stability of these elements are marginal, as would be the case at elevated temperatures. If the lifetimes associated with these structured microdomains are on the order of hundreds of microseconds, then Ub folding follows the diffusion collision mechanism with intermediates, many of which coincide with those found in equilibrium. Folding at neutral pH is a sequential process with a populated intermediate resembling that sampled at equilibrium. The transition state structures, obtained using a P-fold analysis, are homogeneous and globular with most of the secondary and tertiary structures being native-like. Many of our findings for both the thermodynamics and kinetics of folding are not only in agreement with experiments but also provide missing details not resolvable in standard experiments. The key prediction that folding mechanism varies dramatically with pH is amenable to experimental tests.
Resumo:
We present results from three-dimensional protein folding simulations in the HP-model on ten benchmark problems. The simulations are executed by a simulated annealing-based algorithm with a time-dependent cooling schedule. The neighbourhood relation is determined by the pull-move set. The results provide experimental evidence that the maximum depth D of local minima of the underlying energy landscape can be upper bounded by D < n(2/3). The local search procedure employs the stopping criterion (In/delta)(D/gamma) where m is an estimation of the average number of neighbouring conformations, gamma relates to the mean of non-zero differences of the objective function for neighbouring conformations, and 1-delta is the confidence that a minimum conformation has been found. The bound complies with the results obtained for the ten benchmark problems. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We present experimental results on benchmark problems in 3D cubic lattice structures with the Miyazawa-Jernigan energy function for two local search procedures that utilise the pull-move set: (i) population-based local search (PLS) that traverses the energy landscape with greedy steps towards (potential) local minima followed by upward steps up to a certain level of the objective function; (ii) simulated annealing with a logarithmic cooling schedule (LSA). The parameter settings for PLS are derived from short LSA-runs executed in pre-processing and the procedure utilises tabu lists generated for each member of the population. In terms of the total number of energy function evaluations both methods perform equally well, however. PLS has the potential of being parallelised with an expected speed-up in the region of the population size. Furthermore, both methods require a significant smaller number of function evaluations when compared to Monte Carlo simulations with kink-jump moves. (C) 2009 Elsevier Ltd. All rights reserved.