999 resultados para FOG-2
Resumo:
MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3’ untranslated regions (3’UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3’UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3’UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.
Resumo:
Friend of GATA (FOG) proteins regulate GATA factor-activated gene transcription. During vertebrate hematopoiesis, FOG and GATA proteins cooperate to promote erythrocyte and megakaryocyte differentiation. The Drosophila FOG homologue U-shaped (Ush) is expressed similarly in the blood cell anlage during embryogenesis. During hematopoiesis, the acute myeloid leukemia 1 homologue Lozenge and Glial cells missing are required for the production of crystal cells and plasmatocytes, respectively. However, additional factors have been predicted to control crystal cell proliferation. In this report, we show that Ush is expressed in hemocyte precursors and plasmatocytes throughout embryogenesis and larval development, and the GATA factor Serpent is essential for Ush embryonic expression. Furthermore, loss of ush function results in an overproduction of crystal cells, whereas forced expression of Ush reduces this cell population. Murine FOG-1 and FOG-2 also can repress crystal cell production, but a mutant version of FOG-2 lacking a conserved motif that binds the corepressor C-terminal binding protein fails to affect the cell lineage. The GATA factor Pannier (Pnr) is required for eye and heart development in Drosophila. When Ush, FOG-1, FOG-2, or mutant FOG-2 is coexpressed with Pnr during these developmental processes, severe eye and heart phenotypes result, consistent with a conserved negative regulation of Pnr function. These results indicate that the fly and mouse FOG proteins function similarly in three distinct cellular contexts in Drosophila, but may use different mechanisms to regulate genetic events in blood vs. cardial or eye cell lineages.
Resumo:
HIV escape in the central nervous system (CNS) despite undetectable viral load in the plasma has been observed and may contribute to HIV-associated neurocognitive disorders. Favouring the use of HIV drugs with a good penetration into the CNS has been advocated, leading to the establishment of the CNS penetration-effectiveness (CPE) score. However, the relevance of this score is not fully established. Ciccarelli et al. compared two versions of the CPE scores in their capacity to predict cognitive dysfunction in HIV-infected individuals. The revised CPE score, but not the original one, showed an improved association with cognitive impairment. Prospective studies are warranted to assess the validity of the CPE score.
Resumo:
The Fog of Cyber Defence is a book about cyberspace, cyber security and cyberwar. The book is untangling the ties of the Nordic states with the important, yet complex and foggy phenomenon of cyber. It is adding important perspectives into the ongoing discussion about cyber security and creating room for the deepening of co-operation amongst the Nordic states. The articles in the book contribute to the debate over the implications of cyber for national security and the armed forces. The authors, who come from various professional backgrounds, appreciate and welcome further discussion and comments on the very important themes that impact our everyday lives.
Resumo:
Large fine mode-dominated aerosols (submicron radius) in size distributions retrieved from the Aerosol Robotic Network (AERONET) have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low-altitude cloud such as stratocumulus or fog. Retrievals with cloud-processed aerosol are sometimes bimodal in the accumulation mode with the larger-size mode often similar to 0.4-0.5 mu m radius (volume distribution); the smaller mode, typically similar to 0.12 to similar to 0.20 mu m, may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the "shoulder" of larger-size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near-cloud environment and higher overall AOD than typically obtained from remote sensing owing to bias toward sampling at low cloud fraction.
Resumo:
Fog oases, locally named Lomas, are distributed in a fragmented way along the western coast of Chile and Peru (South America) between ~6°S and 30°S following an altitudinal gradient determined by a fog layer. This fragmentation has been attributed to the hyper aridity of the desert. However, periodically climatic events influence the ‘normal seasonality’ of this ecosystem through a higher than average water input that triggers plant responses (e.g. primary productivity and phenology). The impact of the climatic oscillation may vary according to the season (wet/dry). This thesis evaluates the potential effect of climate oscillations, such as El Niño Southern Oscillation (ENSO), through the analysis of vegetation of this ecosystem following different approaches: Chapters two and three show the analysis of fog oasis along the Peruvian and Chilean deserts. The objectives are: 1) to explain the floristic connection of fog oases analysing their taxa composition differences and the phylogenetic affinities among them, 2) to explore the climate variables related to ENSO which likely affect fog production, and the responses of Lomas vegetation (composition, productivity, distribution) to climate patterns during ENSO events. Chapters four and five describe a fog-oasis in southern Peru during the 2008-2010 period. The objectives are: 3) to describe and create a new vegetation map of the Lomas vegetation using remote sensing analysis supported by field survey data, and 4) to identify the vegetation change during the dry season. The first part of our results show that: 1) there are three significantly different groups of Lomas (Northern Peru, Southern Peru, and Chile) with a significant phylogenetic divergence among them. The species composition reveals a latitudinal gradient of plant assemblages. The species origin, growth-forms typologies, and geographic position also reinforce the differences among groups. 2) Contradictory results have emerged from studies of low-cloud anomalies and the fog-collection during El Niño (EN). EN increases water availability in fog oases when fog should be less frequent due to the reduction of low-clouds amount and stratocumulus. Because a minor role of fog during EN is expected, it is likely that measurements of fog-water collection during EN are considering drizzle and fog at the same time. Although recent studies on fog oases have shown some relationship with the ENSO, responses of vegetation have been largely based on descriptive data, the absence of large temporal records limit the establishment of a direct relationship with climatic oscillations. The second part of the results show that: 3) five different classes of different spectral values correspond to the main land cover of Lomas using a Vegetation Index (VI). The study case is characterised by shrubs and trees with variable cover (dense, semi-dense and open). A secondary area is covered by small shrubs where the dominant tree species is not present. The cacti area and the old terraces with open vegetation were not identified with the VI. Agriculture is present in the area. Finally, 4) contrary to the dry season of 2008 and 2009 years, a higher VI was obtained during the dry season of 2010. The VI increased up to three times their average value, showing a clear spectral signal change, which coincided with the ENSO event of that period.
Resumo:
During two extended summer seasons in 2006 and 2007 we operated two battery driven versions of the Caltech active strand cloud water collector (MiniCASCC) at the Niesen mountain (2362 m a.s.l.) in the northern part of the Swiss Alps, and two devices at the Lägeren research tower (690 m a.s.l.) at the northern boundary of the Swiss Plateau. During these two field operation phases we gained weekly samples of fog water, where we analyzed the major anions and cations, and the isotope ratios of fog water (in form of δ2H and δ18O). Dominant ions in fog water at all sites were NH4+, NO3−, and SO42 −. Compared to precipitation, the enrichment factors in fog water were in the range 5–9 at the highest site, Niesen Kulm. We found considerably lower summertime ion loadings in fog water at the two Alpine sites than at lower elevations above the Swiss Plateau. The lowest ion concentrations were found at the Niesen Kulm site at 2300 m a.s.l., whereas the highest concentrations (a factor 7 compared to Niesen Kulm) were found in fog water at the Lägeren site. Occult nitrogen deposition was estimated from fog frequency and typical fog water flux rates. This pathway contributes 0.3–3.9 kg N ha− 1 yr− 1 to the total N deposition at the highest site on Niesen mountain, and 0.1–2.2 kg N ha− 1 yr− 1 at the lower site. These inputs are the reverse of ion concentrations measured in fog due to the 2.5 times higher frequency of fog occurrence at the mountain top (overall fog occurrence was 25% of the time) as compared to the lower Niesen Schwandegg site. Although fog water concentrations were on the lower range reported in earlier studies, fog water is likely to be an important N source for Northern Alpine ecosystems and might reach values up to 16% of the total N deposition and up to 75% of wet N deposition by precipitation.
Resumo:
Fog deposition, precipitation, throughfall and stemflow were measured in a windward tropical montane cloud forest near Monteverde, Costa Rica, for a 65-day period during the dry season of 2003. Net fog deposition was measured directly using the eddy covariance (EC) method and it amounted to 1.2 ± 0.1 mm/day (mean ± standard error). Fog water deposition was 5-9% of incident rainfall for the entire period, which is at the low end of previously reported values. Stable isotope concentrations (d18O and d2H) were determined in a large number of samples of each water component. Mass balance-based estimates of fog deposition were 1.0 ± 0.3 and 5.0 ± 2.7 mm/day (mean ± SE) when d18O and d2H were used as tracer, respectively. Comparisons between direct fog deposition measurements and the results of the mass balance model using d18O as a tracer indicated that the latter might be a good tool to estimate fog deposition in the absence of direct measurement under many (but not all) conditions. At 506 mm, measured water inputs over the 65 days (fog plus rain) fell short by 46 mm compared to the canopy output of 552 mm (throughfall, stemflow and interception evaporation). This discrepancy is attributed to the underestimation of rainfall during conditions of high wind.