999 resultados para FLUX-LINE-LATTICE
Resumo:
Field angle dependent critical current, magneto-optical microscopy and high resolution electron microscopy studies have been performed on YBa2Cu3O7-delta thin films grown on miscut substrates. High resolution electron microscopy images show that the films studied exhibited clean epitaxial growth with a low density of antiphase boundaries and stacking faults. Any antiphase boundaries (APBs) formed near the film substrate interface rapidly healed rather than extending through the thickness of the film. Unlike vicinal films grown on annealed substrates, which contain a high density of antiphase boundaries, magneto-optical imaging showed no filamentary flux penetration in the films studied. The flux penetration is, however, asymmetric. This is associated with intrinsic pinning of flux strings by the tilted a-b planes and the dependence of the pinning force on the angle between the local field and the a-b planes. Field angle dependent critical current measurements exhibited the striking vortex channeling effect previously reported in vicinal films. By combining the results of three complementary characterization techniques it is shown that extended APB free films exhibit markedly different critical current behavior compared to APB rich films. This is attributed to the role of APB sites as strong pinning centers for Josephson string vortices between the a-b planes. (C) 2003 American Institute of Physics.
Resumo:
In this paper, we consider the extension of the Brandt theory of elasticity of the Abrikosov flux-line lattice for a uniaxial superconductor for the case of parallel flux lines. The results show that the effect of the anisotropy is to rescale the components of the wave vector k and the magnetic field and order-parameter wave vector cut off by a geometrical parameter previously introduced by Kogan.
Flux-Line-Lattice Melting and Upper Critical Field of Bi1.65Pb0.35Sr2Ca2Cu3O10+delta Ceramic Samples
Resumo:
We have conducted magnetoresistance measurements rho(T,H) in applied magnetic fields up to 18 T in Bi1.65Pb0.35Sr2Ca2Cu3O10+delta ceramic samples which were subjected to different uniaxial compacting pressures. The anisotropic upper critical fields H (c2)(T) were extracted from the rho(T,H) data, yielding and the out-of-plane superconducting coherence length xi (c) (0)similar to 3 . We have also estimated and xi (ab) (0) similar to 90 . In addition to this, a flux-line-lattice (FLL) melting temperature T (m) has been identified as a second peak in the derivative of the magnetoresistance d rho/dT data close to the superconducting transition temperature. An H (m) vs. T phase diagram was constructed and the FLL boundary lines were found to obey a temperature dependence H (m) ae(T (c) /T-1) (alpha) , where alpha similar to 2 for the sample subjected to the higher compacting pressure. A reasonable value of the Lindemann parameter c (L) similar to 0.29 has been found for all samples studied.
Resumo:
The driven state of a well-ordered flux line lattice in a single crystal of 2H-NbSe2 in the time domain has revealed the presence of substantial fluctuations in velocity, with large and distinct time periods (similar to seconds). A superposition of a periodic drive in the driven vortex lattice causes distinct changes in these fluctuations. We propose that prior to the onset of the peak effect there exists a heretofore unexplored regime of coherent dynamics, with unexpected behavior in velocity fluctuations.
Resumo:
The low-T-c layered superconductor 2H-NbSe2 shows remarkable results for free flux-flow Hall effect. At low magnetic fields, the Nozieres-Vinen result of a field-independent Hall angle appears to hold. At larger fields, a marked departure occurs leading to an extremely sharp and pronounced minimum slightly below H-c2, unaccounted for in the standard theoretical models. The results suggest the existence of collective dynamics and phase transitions (such as melting) in a clean flux line lattice.
Resumo:
We have studied the isothermal, magnetic field (H‖c) dependent rf power P(H) dissipation (Hrf‖a) in the superconducting state of Bi2Sr2CaCu2O8 single crystals prior to and after irradiation with 250 MeV 107Ag17+ ions. In the pristine state, P(H) shows an initial decrease with increase in field, reaches a minimum at HM(T) and increases monotonically for H>HM(T). This behavior arises when the electromagnetic coupling between the pancake vortices in adjacent CuO layers becomes dominant on increasing the field and minimizes the distortions of the flux lines by confining the 2D vortices. In the post irradiated state, such an initial decrease and the minimum in P(H) is not observed but only a much reduced rf dissipation that monotonically increases with field from H = 0 onwards is seen. We attribute this difference to the strong enhancement of the tilt modulus C44 of the flux lines on irradiation when the pancake vortices in adjacent CuO bilayers are pinned along the track forming a well-stacked flux line in the field direction (‖c). We have also observed that the rf dissipation disappears at a certain temperature Tsf, at which the normal core of the flux line becomes commensurate with the columnar track diameter.
Resumo:
After nearly 15 years of research effort, High Temperature Superconductors (HTS) are finding a wide range of practical applications. A clear understanding of the factors controlling the current carrying capacity of these materials is a prerequisite to their successful technological development. The critical current density (Jc) in HTS is directly dependent on the structure and pinning of the Flux Line Lattice (FLL) in these materials. This thesis presents an investigation of the Jc anisotropy in HTS. The use of thin films grown on off c-axis (vicinal) substrates allowed the effect of current directions outside the cuprate planes to be studied. With this experimental geometry Berghuis, et al. (Phys. Rev. Lett. 79, 12, pg. 2332) observed a striking flux channelling effect in vicinal YBa2Cu3O7-δ (YBCO) films. By confirming, and extending, this observation, it is demonstrated that this is an intrinsic effect. The results obtained, appear to fit well with the predictions of a field angle dependent cross-over from a three dimensional rectilinear FLL to a kinked lattice of strings and pancakes. The pinning force density for movement of strings inside the cuprate planes is considerably less than that on vortex pancake elements. When the FLL is entirely string-like this reduced pinning leads to the observed channelling minima. It is observed that anti-phase boundaries enhance the Jc in vicinal YBCO films by strongly pinning vortex strings. The effect on the FLL structure cross-over of increasing anisotropy has been elucidated using de-oxygenated vicinal YBCO films. Intriguingly, the counter intuitive prediction that the range of applied field angle for which the kinked lattice is fully developed reduces with increasing anisotropy, appears to be confirmed. Although vortex channelling cannot be observed in c-axis YBCO films, the pinning force density for vortex string channelling has been extracted by observing string dragging. By studying the effect of rotating the applied field at a constant angle to the cuprate planes, it is possible to observe the cross-over into the string pancake regime in c-axis films. In the 3D region, the observed behaviour is well explained by the anisotropic Ginzburg-Landau model. Measurements were also made on thin films of the much more anisotropic Bi 2Sr2CaCu2O8+x material, grown on vicinal substrates. The absence of any flux channelling effect and clear adherence to the expected Kes-Law behaviour in the observed Jc characteristics does not provide evidence for the existence of the predicted ‘crossing lattice’ in Bi 2Sr2CaCu2O8+x .
Resumo:
Locked-to-sliding phase transition has been studied in the driven two-dimensional Frenkel-Kontorova model with the square symmetric substrate potential. It is found that as the driving force increases, the system transfers from the locked state to the sliding state where the motion of particles is in the direction different from that of driving force. With the further increase in driving force, at some critical value, the particles start to move in the direction of driving force. These two critical forces, the static friction or depinning force, and the kinetic friction force for which particles move in the direction of driving force have been analyzed for different system parameters. Different scenarios of phase transitions have been examined and dynamical phases are classified. In the case of zero misfit angle, the analytical expressions for static and kinetic friction force have been obtained.
Resumo:
Size and surface dynamical effects are investigated in thin superconducting stripes with variable width. We perform numerical simulations of the vortex dynamics, with the inclusion of the surface confining potential and a random distribution of pinning centers. To fully characterize the vortex flow, we calculate the differential resistance, the transverse diffusion coefficient, the structure factor and the intensity of the Bragg peaks, as functions of the transport force. We found that surface effects induce a premature ordering of the flux line lattice, and the system displays plastic and smectic behavior only in a very narrow range of forces. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
1. The electric field strength between coplanar electrodes is calculated employing "conformal transformations." The electron multiplication factor is then computed in the nonuniform field region. These calculations have been made for different gap lengths, voltages, and also for different gases and gas pressures. The configuration results in a curved discharge path. It is found that the electron multiplication is maximum along a particular flux line and the prebreakdown discharge is expected to follow this flux line. Experimental tubes incorporating several coplanar gaps have been fabricated. Breakdown voltages have been measured for various discharge gaps and also for various gases such as xenon, helium, neon, argon, and neon-argon mixture (99.5:0.5) at different filling pressures. The variation of breakdown voltage with pressure and gap length is discussed. The observed discharge paths are curved and this is in agreement with theoretical results. A few experimental single-digit coplanar gas-discharge displays (CGDD's) with digit height of 5 cm have been fabricated and dependence of their characteristics on various parameters, including spacing between top glass plate and bottom substrate, have been studied.
Resumo:
The constitutive model for a magnetostrictive material and its effect on the structural response is presented in this article. The example of magnetostrictive material considered is the TERFENOL-D. As like the piezoelectric material, this material has two constitutive laws, one of which is the sensing law and the other is the actuation law, both of which are highly coupled and non-linear. For the purpose of analysis, the constitutive laws can be characterized as coupled or uncoupled and linear or non linear. Coupled model is studied without assuming any explicit direct relationship with magnetic field. In the linear coupled model, which is assumed to preserve the magnetic flux line continuity, the elastic modulus, the permeability and magneto-elastic constant are assumed as constant. In the nonlinear-coupled model, the nonlinearity is decoupled and solved separately for the magnetic domain and the mechanical domain using two nonlinear curves, namely the stress vs. strain curve and the magnetic flux density vs. magnetic field curve. This is performed by two different methods. In the first, the magnetic flux density is computed iteratively, while in the second, the artificial neural network is used, where in the trained network will give the necessary strain and magnetic flux density for a given magnetic field and stress level. The effect of nonlinearity is demonstrated on a simple magnetostrictive rod.
Resumo:
The Berry phase for an electron in a one-dimensional box rotated around a magnetic flux line has contributions from the geometry and the magnetic flux, which gives an Aharonov-Bohm effect. For a circular box enclosing the magnetic flux, the Berry phase depends on the boundary conditions.
Resumo:
This thesis investigates phenomena of vortex dynamics in type II superconductors depending on the dimensionality of the flux-line system and the strength of the driving force. In the low dissipative regime of Bi_2Sr_2CaCu_2O_{8+delta} (BSCCO) the influence of oxygen stoichiometry on flux-line tension was examined. An entanglement crossover of the vortex system at low magnetic fields was identified and a comprehensive B-T phase diagram of solid and fluid phases derived.In YBa_2Cu_3O_7 (YBCO) extremely long (>100 mm) high-quality measurement bridges allowed to extend the electric-field window in transport measurements by up to three orders of magnitude. Complementing analyses of the data conclusively produced dynamic exponents of the glass transition z~9 considerably higher than theoretically predicted and previously reported. In high-dissipative measurements a voltage instability appearing in the current-voltage characteristics of type II superconductors was observed for the first time in BSCCO and shown to result from a Larkin-Ovchinnikov flux-flow vortex instability under the influence of quasi-particle heating. However, in an analogous investigation of YBCO the instability was found to appear only in the temperature and magnetic-field regime of the vortex-glass state. Rapid-pulse measurements fully confirmed this correlation of vortex glass and instability in YBCO and revealed a constant rise time (~µs).
Resumo:
In this work the flux line dynamics in High-Temperature Superconductor (HTSC) thin films in the presence of columnar defects was studied using electronic transport measurements. The columnar defects which are correlated pinning centers for vortices were generated by irradiation with swift heavy ions at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt. In the first part, the vortex dynamics is discussed within the framework of the Bose-glass model. This approach describes the continuous transition from a vortex liquid to a Bose-glass phase which is characterized by the localization of the flux lines at the columnar defects. The critical behavior of the characteristic length and time scales for temperatures in the vicinity of this phase transition were probed by scaling properties of experimentally obtained current-voltage characteristics. In contrast to the predicted universal properties of the critical behavior the scaling analysis shows a strong dependence of the dynamic critical exponent on the experimentally accessible electric field range. In addition, the predicted divergence of the activation energy in the limit of low current densities was experimentally not confirmed.The dynamic behavior of flux lines in spatially resolved irradiation geometries is reported in the second part. Weak pinning channels with widths between 10 µm and 100 µm were generated in a strong pinning environment with the use of metal masks and the GSI microprobe, respectively. Measurements of the anisotropic transport properties of these structures show a striking resemblance to the results in YBCO single crystals with unidirected twin boundaries which were interpreted as a guided vortex motion effect. The use of two additional test bridges allowed to determine in parallel the resistivities of the irradiated and unirradiated parts as well as the respective current-voltage characteristics. These measurements provided the input parameters for a numerical simulation of the potential distribution in the spatially resolved irradiation geometry. The results are interpreted within a model that describes the hydrodynamic interaction between a Bose-glass phase and a vortex liquid. The interface between weakly pinned flux lines in the unirradiated channels and strongly pinned vortices leads to a nonuniform vortex velocity profile and therefore a variation of the local electric field. The length scale of these interactions was estimated for the first time in measuring the local variation of the electric field profile in a Bose-glass contact.Finally, a method for the determination of the true temperature in HTSC thin films at high dissipation levels is described. In this regime of electronic transport the occurrence of a flux flow instability is accompanied by heating effects in the vortex system. The heat propagation properties of the film/substrate system are deduced from the time dependent voltage response to a short high current density pulse of rectangular shape. The influence of heavy ion irradiation on the heat resistance at the film/substrate interface is studied.