996 resultados para FLUX RATES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates abundance variations in Noelaerhabdaceae assemblages during the late Oligocene-early Miocene at three subtropical sites in the Atlantic and Pacific oceans (DSDP Sites 516, 608 and 588). At these three sites, nannofossil assemblages were characterized by the successive high proportion of Cyclicargolithus, Dictyococcites and Reticulofenestra. Local paleoceanographic changes, such as the input of nutrient-poor water masses, might explain shifts in ecological prominence within the Noelaerhabdaceae at DSDP Site 516 (South Atlantic). But the similar timing of a decline in Cyclicargolithus at the three studied sites more likely corresponds to a global process. Here, we explore possible causes for this long-term taxonomic turnover. A global change in climate, associated with early Miocene glaciations, could have triggered a decline in fitness of the taxon Cyclicargolithus. The ecological niche made vacant because of the decrease in Cyclicargolithus could then have been exploited by Dictyococcites and Reticulofenestra that became prominent in the assemblages after 20.5 Ma. Alternatively, this global turnover might reflect a gradual evolutionary succession and be the result of other selection pressures, such as increased competition between Cyclicargolithus and Dictyococcites/Reticulofenestra. A diversification within Dictyococcites/Reticulofenestra, indicated by an expansion in the size variation within this group since ~ 20.5 Ma, may have contributed to the decreased fitness of Cyclicargolithus.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Honeybees rely primarily on the oxidation of hexose sugars to provide the energy required for flight. Measurement of VCO2 (equal to VO2, because VCO2/VO2 = 1.0 during carbohydrate oxidation) during flight allowed estimation of steady-state flux rates through pathways of flight muscle energy metabolism. Comparison of Vmax values for flight muscle hexokinase, phosphofructokinase, citrate synthase, and cytochrome c oxidase with rates of carbon and O2 flux during flight reveal that these enzymes operate closer to Vmax in the flight muscles of flying honeybees than in other muscles previously studied. Possible mechanistic and evolutionary implications of these findings are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boreal peatlands contain approximately one third of the global soil carbon and are considered net sinks of atmospheric CO2. Water level position is one of the main regulators of CO2 fluxes in northern peatlands because it controls both the thickness of the aerobic layer in peat and plant communities. However, little is known about the role of different plant functional groups and their possible interaction with changing water level in boreal peatlands with regard to CO2 cycling. Climate change may also accelerate changes in hydrological conditions, changing both aerobic conditions and plant communities. To help answer these questions, this study was conducted at a mesocosm facility in Northern Michigan where the aim was to experimentally study the effects of water levels, plant functional groups (sedges, shrubs and mosses) and the possible interaction of these on the CO2 cycle of a boreal peatland ecosystem. The results indicate that Ericaceous shrubs are important in the boreal peatland CO2 cycle. The removal of these plants decreased ecosystem respiration, gross ecosystem production and net ecosystem exchange rates, whereas removing sedges did not show any significant differences in the flux rates. The water level did not significantly affect the flux rates. The amount of aboveground sedge biomass was higher in the low water level sedge treatment plots compared to the high water level sedge plots, possibly because the lowered water level and the removal of Ericaceae released nutrients for sedges to use up.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A static enclosure method was applied to determine the exchange of dimethyl sulfide (DMS) and carbonyl sulfide (OCS) between the surface of Sphagnum peatlands and the atmosphere. Measurements were performed concurrently with dynamic (flow through) enclosure measurements with sulfur-free air used as sweep gas. This latter technique has been used to acquire the majority of available data on the exchange of S gases between the atmosphere and the continental surfaces and has been criticized because it is thought to overestimate the true flux of gases by disrupting natural S gas gradients. DMS emission rates determined by both methods were not statistically different between 4 and >400 nmol m−2 h−1, indicating that previous data on emissions of at least DMS are probably valid. However, the increase in DMS in static enclosures was not linear, indicating the potential for a negative feedback of enclosure DMS concentrations on efflux. The dynamic enclosure method measured positive OCS flux rates (emission) at all sites, while data using static enclosures indicated that OCS was consumed from the atmosphere at these same sites at rates of 3.7 to 55 nmol m−2 h−1. Measurements using both enclosure techniques at a site devoid of vegetation showed that peat was a source of both DMS and OCS. However, the rate of OCS efflux from decomposing peat was more than counterbalanced by OCS consumption by vegetation, including Sphagnum mosses, and net OCS uptake occurred at all sites. We propose that all wetlands are net sinks for OCS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Regional to global scale modelling of N flux from land to ocean has progressed to date through the development of simple empirical models representing bulk N flux rates from large watersheds, regions, or continents on the basis of a limited selection of model parameters. Watershed scale N flux modelling has developed a range of physically-based approaches ranging from models where N flux rates are predicted through a physical representation of the processes involved, through to catchment scale models which provide a simplified representation of true systems behaviour. Generally, these watershed scale models describe within their structure the dominant process controls on N flux at the catchment or watershed scale, and take into account variations in the extent to which these processes control N flux rates as a function of landscape sensitivity to N cycling and export. This paper addresses the nature of the errors and uncertainties inherent in existing regional to global scale models, and the nature of error propagation associated with upscaling from small catchment to regional scale through a suite of spatial aggregation and conceptual lumping experiments conducted on a validated watershed scale model, the export coefficient model. Results from the analysis support the findings of other researchers developing macroscale models in allied research fields. Conclusions from the study confirm that reliable and accurate regional scale N flux modelling needs to take account of the heterogeneity of landscapes and the impact that this has on N cycling processes within homogenous landscape units.