890 resultados para FLUORESCENT COMPOUNDS
Resumo:
Solid tumours display a complex drug resistance phenotype that involves inherent and acquired mechanisms. Multicellular resistance is an inherent feature of solid tumours and is known to present significant barriers to drug permeation in tumours. Given this barrier, do acquired resistance mechanisms such as P-glycoprotein (P-gp) contribute significantly to resistance? To address this question, the multicellular tumour spheroid (MCTS) model was used to examine the influence of P-gp on drug distribution in solid tissue. Tumour spheroids (TS) were generated from either drug-sensitive MCF7WT cells or a drug-resistant, P-gp-expressing derivative MCF7Adr. Confocal microscopy was used to measure time courses and distribution patterns of three fluorescent compounds; calcein-AM, rhodamine123 and BODIPY-taxol. These compounds were chosen because they are all substrates for P-gp-mediated transport, exhibit high fluorescence and are chemically dissimilar. For example, BODIPY-taxol and rhodamine 123 showed high accumulation and distributed extensively throughout the TSWT, whereas calcein-AM accumulation was restricted to the outermost layers. The presence of P-gp in TSAdr resulted in negligible accumulation, regardless of the compound. Moreover, the inhibition of P-gp by nicardipine restored intracellular accumulation and distribution patterns to levels observed in TSWT. The results demonstrate the effectiveness of P-gp in modulating drug distribution in solid tumour models. However, the penetration of agents throughout the tissue is strongly determined by the physico-chemical properties of the individual compounds.
Resumo:
In recent years, the study of restricted rotation bonds in organic compounds has aroused increasing interest. The reason is that this characteristic can lead to obtaining new properties in organic compounds. In this research thesis, an intense investigation was carried out using DFT calculations and experimental evaluation of the barriers to rotational energies, in order to discover new properties deriving from the restricted rotation bonds. Research has been developed in various fields of organic chemistry, ranging from drugs (the atropisomeric atorvastatin in Chapter 3) to luminescent compounds (aryls amino borane in Chapter 4). Furthermore, an organocatalytic central to axial conversion mechanism was investigated through DFT calculations, finding out interesting outcomes (Chapter 5). Finally, a project in collaboration with Dr. Farran and Prof. Vanthuyne of the Aix-Marseille University was done to investigate the interactions in transition states of rotational barriers.
Resumo:
A high-energy intermediate in the peroxyoxalate reaction can be accumulated at room temperature under specific reaction conditions and in the absence of any reducing agent in up to micromolar concentrations. Bimolecular interaction of this intermediate, accumulated in the reaction of oxalyl chloride with hydrogen peroxide, with an activator (highly fluorescent aromatic hydrocarbons with low oxidation potential) added in delay shows unequivocally that this intermediate is responsible for chemiexcitation of the activator. Activation parameters for the unimolccular decomposition of this intermediate (Delta H(double dagger) = 11.2 kcal mol(-1); Delta S(double dagger) = -23.2 cal mol(-1) K(-1)) and for its bimolecular reaction with 9,10-diphenylanthracene (Delta H(double dagger) = 4.2 kcal mol(-1); Delta S(double dagger) = -26.9 cal mol(-1) K(-1)) show that this intermediate is much less stable than typical 1,2-dioxetanes and 1,2-dioxetanones and demonstrate its highly favored interaction with the activator. Therefore, it can be inferred that structural characterization of the high-energy intermediate in the presence of an activator must be highly improbable. The observed linear free-energy correlation between the catalytic rate constants and the oxidation potentials of several activators definitely confirms the occurrence of the chemically initiated electron-exchange luminescence (CIEEL) mechanism in the chemiexcitation step of the peroxyoxalate system.
Resumo:
Produced water has lately aroused interest due to their high degree of salinity, suspended oil particles, chemicals added in various manufacturing processes, heavy metals and radioactivity sometimes. Along with oil and due to its high volume production, water production is one of the pollutants of most concern in the process of oil extraction. PAHs due to their ubiquity and their characteristics carcinogenic or mutagenic and teratogenic even have attracted the attention of every scientific society. Formed from the incomplete combustion of organic matter may be natural or anthropogenic. Some materials have been researched with the goal of cleaning up environmental matrices that may be contaminated by hydrocarbons. Among these materials researched various clays have been employed, of which highlights the vermiculite. The family of phyllosilicates, vermiculite for its potential and its high hydrophobic surface area has been a tool widely used in the decontamination of water in processes of oil spills. However, when it loses its capacity expanded hydrophobic having the necessity of using a hidrofobizante to make it organophilic. Among the numerous hidrofobizantes researched and used the linseed oil was the pioneer. In this study sought to evaluate the capacity of removal of PAHs using the vermiculite hydrofobized with linseed oil and wax also, for it was made use of the 24 full factorial design as the main tool for the experiments. We also evaluated the clay grain size (-20 +48 and -48 +80 #), the percentage of hidrofobizante applied (5 and 10%) and salinity of the water produced synthesized in our laboratory (35,000 and 55,000 ppm). The molecular fluorescence spectroscopy due to its sensitivity and speed was used to verify the adsorption capacity of clay, as well as gas chromatography served as an auxiliary technique to identify and quantify the PAHs in solution. In order to characterize the vermiculite was made use of X-ray fluorescence and X-ray diffraction. The infrared and thermogravimetry were essential to note hydrophobization and the amount of coating of clay. According to the fluorescence analysis showed that the test 12 was the best result in about 98% adsorption of fluorescent compounds, however the high salinity, the smallest particle size, the highest percentage of hidrofobizante and the use of linseed oil showed greater efficiency in the removal capacity of these hydrocarbons, in accordance with the trend followed by the analysis of the major factors of the factorial design. To verify the adsorption capacity of clay using a fixed volume of water produced synthetically, used as the test base 12, at their respective levels and factors. Thus, it was observed that after adding about 1 ½ liters of water solution produced synthetically, about 300 times its volume in mass, the vermiculite was able to adsorb 80% of fluorescent species present in solution
Resumo:
Almost fifty years after the discovery of the peroxyoxalate reaction by E. A. Chandross in the early nineteen sixties, this review article intends to give a general overview on mechanistic aspects of this system and to describe the principles of its analytical application. After a short general introduction on the principles of chemiluminescence and the history of peroxyoxalate discovery, mechanistic aspects of high-energy intermediate formation, its structure and its reaction with an activator in the peroxyoxalate system are discussed. Finally, analytical applications of peroxyoxalate chemiluminescence are exemplified using representative recent examples, including oxalic acid detection in biological samples.
Resumo:
The chemiluminescent reactions of bis(2,4,6-trichlorophenyl)oxalate (TCPO) and bis(2-nitrophenyl)oxalate (2-NPO) with hydrogen peroxide in acetonitrile/water micellar systems (anionic, cationic, and non-ionic) and gamma-cyclodextrin were studied in the presence of fluoranthene or 9,10-diphenylanthracene, imidazole, and two buffer solutions, HTRIS+/TRIS and H2PO4-/HPO42-. The relative chemiluminenscence (CL) intensity is higher in the presence of the cationic (DDAB, CTAC, DODAC, and OTAC), anionic (SDS), and non-ionic (Tween 80) surfactants. In the presence of some non-ionic surfactants (Brij 35, Brij 76, and Tween 20), the CL intensity was partially quenched compared with the reaction with no surfactant. The sensitivity for hydrogen peroxide determination in the range 0.01 x 10(-4) to 1.0 x 10(-4) mol L-1, considering the slope of the calibration curves (maximum peak height of CL vs. concentration), improved with the introduction of DDAH, CTAB, and SDS in HTRIS+/TRIS buffer.
Resumo:
The adenosine receptors are members of the G-protein coupled receptor (GPCR) family which represents the largest class of cell-surface proteins mediating cellular communication. As a result, GPCRs are formidable drug targets and it is estimated that approximately 30% of the marketed drugs act through members of this receptor class. There are four known subtypes of adenosine receptors: A1, A2A, A2B and A3. The adenosine A1 receptor, which is the subject of this presentation, mediates the physiological effects of adenosine in various tissues including the brain, heart, kidney and adipocytes. In the brain for instance, its role in epilepsy and ischemia has been the focus of many studies. Previous attempts to study the biosynthesis, trafficking and agonist-induced internalisation of the adenosine A1 receptor in neurons using fluorescent protein-receptor fusion constructs have been hampered by the sheer size of the fluorescent protein (GFP) that ultimately affected the function of the receptor. We have therefore initiated a research programme to develop small molecule fluorescent agonists that selectively activate the adenosine A1 receptor. Our probe design is based on the endogenous ligand adenosine and the known unselective adenosine receptor agonist NECA. We have synthesised a small library of non-fluorescent adenosine derivatives that have different cyclic and bicyclic moieties at the 6 position of the purine ring and have evaluated the pharmacology of these compounds using a yeast-based assay. This analysis revealed compounds with interesting behaviour, i.e. exhibiting subtype-selectivity and biased signalling, that can be potentially used as tool compounds in their own right for cellular studies of the adenosine A1 receptor. Furthermore, we have also linked fluorescent dyes to the purine ring and discovered fluorescent compounds that can activate the adenosine A1 receptor.
Resumo:
AIMS: To develop reporter constructs based on stable and unstable variants of the green fluorescent protein (GFP) for monitoring balanced production of antifungal compounds that are crucial for the capacity of the root-colonizing Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogenic fungi. METHODS AND RESULTS: Pseudomonas fluorescens CHA0 produces the three antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT) and pyrrolnitrin (PRN). The gfp[mut3] and gfp[AAV] reporter genes were fused to the promoter regions of the DAPG, PLT and PRN biosynthetic genes. The reporter fusions were then used to follow the kinetics of expression of the three antifungal metabolites in a microplate assay. DAPG and PLT were found to display an inverse relationship in which each metabolite activates its own biosynthesis while repressing the synthesis of the other metabolite. PRN appears not to be involved in this balance. However, the microbial and plant phenolic metabolite salicylate was found to interfere with the expression of both DAPG and PLT. CONCLUSIONS: The results obtained provide evidence that P. fluorescens CHA0 may keep the antifungal compounds DAPG and PLT at a fine-tuned balance that can be affected by certain microbial and plant phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, the present study is the first to use stable and unstable GFP variants to study antibiotic gene expression in a biocontrol pseudomonad. The developed reporter fusions will be a highly valuable tool to study in situ expression of this bacterial biocontrol trait on plant roots, i.e. at the site of pathogen suppression.
Resumo:
Singlet molecular oxygen O(2)((1)Delta(g)) is a potent oxidant that can react with different biomolecules, including DNA, lipids and proteins. Many polycyclic aromatic hydrocarbons have been studied as O(2)((1)Delta(g)) chemical traps. Nevertheless, a suitable modification in the polycyclic aromatic ring must be made to increase the yield of O(2)((1)Delta(g)) chemical trapping. With this goal, an anthracene derivative, diethyl-3,3 '-(9,10-anthracenediyl)bisacrylate (DADB), was obtained from the reaction of 9,10-dibromoanthracene and ethyl acrylate through the Heck coupling reaction. The coupling of ethyl acrylate with the anthracene ring produced a new lipophilic, esterified, fluorescent probe reactive toward O(2)((1)Delta(g)). This compound reacts with O(2)((1)Delta(g)) at a rate of k(r) = 1.69 x 10(6) M(-1) s(-1) forming a stable endoperoxide (DADBO(2)), which was characterized by UV-Vis, fluorescence, HPLC/MS and (1)H and (13)C NMR techniques. The photophysical, photochemical and thermostability features of DADB were also evaluated. Furthermore, this compound has the potential for great application in biological systems because it is easily synthetized in large amount and generates specific endoperoxide (DADBO(2)), which can be easily detected by HPLC tandem mass spectrometry (HPLC/MS/MS).
Resumo:
A major challenge associated with using large chemical libraries synthesized on microscopic solid support beads is the rapid discrimination of individual compounds in these libraries. This challenge can be overcome by encoding the beads with 1 mum silica colloidal particles (reporters) that contain specific and identifiable combinations of fluorescent byes. The colored bar code generated on support beads during combinatorial library synthesis can be easily, rapidly, and inexpensively decoded through the use of fluorescence microscopy. All reporters are precoated with polyelectrolytes [poly(acrylic acid), PAA, poly(sodium 4-styrenesulfonate PSSS, polyethylenimine, PEI, and/or poly(diallyldimethylammonium chloride), PDADMAC] with the aim of enhancing surface charge, promoting electrostatic attraction to the bead, and facilitating polymer bridging between the bead and reporter for permanent adhesion. As shown in this article, reporters coated with polyelectrolytes clearly outperform uncoated reporters with regard to quantity of attached reporters per bead (54 +/- 23 in 2500 mum(2) area for PEI/PAA coated and 11 +/- 6 for uncoated reporters) and minimization of cross-contamination (1 red reporter in 2500 mum(2) area of green-labeled bead for PEI/PAA coated and 26 +/- 15 red reporters on green-labeled beads for uncoated reporters after 10 days). Examination of various polyelectrolyte systems shows that the magnitude of the xi -potential of polyelectrolyte-coated reporters (-64 mV for PDADMAC/PSSS and -42 mV for PEI/PAA-coated reporters) has no correlation with the number of reporters that adhere to the solid support beads (21 +/- 16 in 2500 mum(2) area for PDADMAC/PSSS and 54 +/- 23 for PEI/PAA-coated reporters). The contribution of polymer bridging to the adhesion has a far greater influence than electrostatic attraction and is demonstrated by modification of the polyelectrolyte multilayers using gamma irradiation of precoated reporters either in aqueous solution or in polyelectrolyte solution.
Resumo:
This work reports the synthesis, characterization, and evaluation of new porphyrins tailored to become biodiesel fluorescent markers. The compounds were obtained by the synthetic modification of the commercially available porphyrin 5,10,15,20-meso-tetrakis(pentafluorophenyl)porphyrin (TPPF(20)) using ethanol and hexadecan-1-ol (cetylic alcohol) as nucleophilic reagents. The stability of the marked biodiesel fuel solutions was investigated every 15 days for a total period of 3 months, and under different storage temperature and light exposure condition, simulating the conventional stock conditions. The influence of the different substituents of the porphyrins on the fluorescence properties of the biodiesel fuel markers was also assessed. The resulting porphyrins were highly soluble in biodiesel fuel and displayed strong fluorescence characterized by two strong emission bands. The fluorescent markers did not affect the biodiesel physical properties and were stable in storage conditions for at least 3 months at a concentration of 4 ppm. The best storage condition was found to be absence of light and 6 degrees C; the limit of detection by photoluminescence technique had magnitude of 10(-13) mol L(-1). The synthesized porphyrins were characterized by nuclear magnetic resonance ((1)H-NMR and (19)F-NMR), mass spectrometry (HRMS), ultraviolet visible absorption spectroscopy, and photoluminescence spectroscopy. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The photodegradation of irinotecan (CPT-11), the semisynthetic derivative of the antitumor alkaloid 20(S)-camptothecin, has been investigated. The drug was exposed to laboratory light for up to 5 days in 0.9% saline solution (pH 8.5). Five significant photodegradation products were observed and a high-performance liquid chromatography (HPLC) assay was employed to isolate them from CPT-11 using gradient conditions. The structures were elucidated by nuclear magnetic resonance spectroscopy and tandem mass spectrometry and shown to be the result of extensive modifications of the lactone ring of CPT-11. Three of the compounds were found to belong to the mappicine group of alkaloids. In addition, the effect of light on the stability of CPT-11 in aqueous solutions and biological fluids was also assessed, Potassium phosphate buffers (0.05 M, pH 5.0-8.2) and saline, plasma, urine, and bile solutions containing 20 mu M CPT-11 were equilibrated in the dark for 24 h before being exposed to laboratory light for up to 171 h at ambient temperature. Four of the five identified photodegradation products were observed and quantitated by isocratic HPLC, using a different detection mode (fluorescence) than the one used for gradient elution, In general, CPT-11 was found to be unstable under neutral and alkaline conditions for all solutions investigated, with the exception of bile. We conclude that CPT-11 is photolabile and that care should be taken to protect samples, particularly those intended for the isolation and identification of novel metabolites of CPT-11.
Resumo:
Large chemical libraries can be synthesized on solid-support beads by the combinatorial split-and-mix method. A major challenge associated with this type of library synthesis is distinguishing between the beads and their attached compounds. A new method of encoding these solid-support beads, 'colloidal bar-coding', involves attaching fluorescent silica colloids ('reporters') to the beads as they pass through the compound synthesis, thereby creating a fluorescent bar code on each bead. In order to obtain sufficient reporter varieties to bar code extremely large libraries, many of the reporters must contain multiple fluorescent dyes. We describe here the synthesis and spectroscopic analysis of various mono- and multi-fluorescent silica particles for this purpose. It was found that by increasing the amount of a single dye introduced into the particle reaction mixture, mono- fluorescent silica particles of increasing intensities could be prepared. This increase was highly reproducible and was observed for six different fluorescent dyes. Multi-fluorescent silica particles containing up to six fluorescent dyes were also prepared. The resultant emission intensity of each dye in the multi-fluorescent particles was found to be dependent upon a number of factors; the hydrolysis rate of each silane-dye conjugate, the magnitude of the inherent emission intensity of each dye within the silica matrix, and energy transfer effects between dyes. We show that by varying the relative concentration of each silane-dye conjugate in the synthesis of multi-fluorescent particles, it is possible to change and optimize the resultant emission intensity of each dye to enable viewing in a fluorescence detection instrument.
Resumo:
The potential applications of macrocycles in chemistry and at its interfaces with biology and physics continue to emerge, one of which is as receptors for small molecules and ions. This review illustrates these applications with examples from the last ten years employing complexation as the binding mechanism; some of the systems presented have already found real-world sensor applications. In any case, the challenges remain to design more selective and sensitive receptors for guests.
Resumo:
A doença de Machado-Joseph (DMJ) ou ataxia espinocerebelosa do tipo 3 (SCA3), conhecida por ser a mais comum das ataxias hereditárias dominantes em todo o mundo, é uma doença neurodegenerativa autossómica dominante que leva a uma grande incapacidade motora, embora sem alterar o intelecto, culminando com a morte do doente. Atualmente não existe nenhum tratamento eficaz para esta doença. A DMJ é resultado de uma alteração genética causada pela expansão de uma sequência poliglutamínica (poliQ), na região C-terminal do gene que codifica a proteína ataxina-3 (ATXN3). Os mecanismos celulares das doenças de poliglutaminas que provocam toxicidade, bem como a função da ATXN3, não são ainda totalmente conhecidos. Neste trabalho, usamos, pela sua simplicidade e potencial genético, um pequeno animal invertebrado, o nemátode C. elegans, com o objetivo de identificar fármacos eficazes para o combate contra a patogénese da DMJ, analisando simultaneamente o seu efeito na agregação da ATXN3 mutante nas células neuronais in vivo e o seu impacto no comportamento motor dos animais. Este pequeno invertebrado proporciona grandes vantagens no estudo dos efeitos tóxicos de proteínas poliQ nos neurónios, uma vez que a transparência das suas 959 células (das quais 302 são neurónios) facilita a deteção de proteínas fluorescentes in vivo. Para além disso, esta espécie tem um ciclo de vida curto, é económica e de fácil manutenção. Neste trabalho testámos no nosso modelo transgénico da DMJ com 130Qs em C.elegans dois compostos potencialmente moduladores da agregação da ATXN3 mutante e da resultante disfunção neurológica, atuando pela via da autofagia. De modo a validar a possível importância terapêutica da ativação da autofagia os compostos candidatos escolhidos foram o Litío e o análogo da Rapamicina CCI-779, testados independentemente e em combinação. A neuroproteção conferida pelo Litío e pelo CCI-779 independentemente sugere que o uso destes fármacos possa ser considerado uma boa estratégia como terapia para a DMJ, a testar em organismos evolutivamente mais próximos do humano. A manipulação da autofagia, segundo vários autores, parece ser benéfica e pode ser a chave para o desenvolvimento de novos tratamentos para várias doenças relacionadas com a agregação proteica e o envelhecimento.