130 resultados para FLUCONAZOLE
Resumo:
In preventing invasive fungal disease (IFD) in patients with acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS), clinical trials demonstrated efficacy of posaconazole over fluconazole and itraconazole. However, effectiveness of posaconazole has not been investigated in the United States in real-world setting outside the environment of controlled clinical trial. We performed a single-center, retrospective cohort study of 130 evaluable patients ≥18 years of age admitted to Duke University Hospital between 2004 and 2010 who received either posaconazole or fluconazole as prophylaxis during first induction or first reinduction chemotherapy for AML or MDS. The primary endpoint was possible, probable, or definite breakthrough IFD. Baseline characteristics were well balanced between groups, except that posaconazole recipients received reinduction chemotherapy and cytarabine more frequently. IFD occurred in 17/65 (27.0%) in the fluconazole group and in 6/65 (9.2%) in the posaconazole group (P = 0.012). Definite/probable IFDs occurred in 7 (10.8%) and 0 patients (0%), respectively (P = 0.0013). In multivariate analysis, fluconazole prophylaxis and duration of neutropenia were predictors of IFD. Mortality was similar between groups. This study demonstrates superior effectiveness of posaconazole over fluconazole as prophylaxis of IFD in AML and MDS patients. Such superiority did not translate to reductions in 100-day all-cause mortality.
Resumo:
In view of both the delay in obtaining identification by conventional methods following blood-culture positivity in patients with candidaemia and the close relationship between species and fluconazole (FLC) susceptibility, early speciation of positive blood cultures has the potential to influence therapeutic decisions. The aim was to develop a rapid test to differentiate FLC-resistant from FLC-sensitive Candida species. Three TaqMan-based real-time PCR assays were developed to identify up to six Candida species directly from BacT/Alert blood-culture bottles that showed yeast cells on Gram staining at the time of initial positivity. Target sequences in the rRNA gene complex were amplified, using a consensus two-step PCR protocol, to identify Candida albicans, Candida parapsilosis, Candida tropicalis, Candida dubliniensis, Candida glabrata and Candida krusei; these are the most commonly encountered Candida species in blood cultures. The first four of these (the characteristically FLC-sensitive group) were identified in a single reaction tube using one fluorescent TaqMan probe targeting 1 8S rRNA sequences conserved in the four species. The FLC-resistant species C. krusei and C. glabrata were detected in two further reactions, each with species-specific probes. This method was validated with clinical specimens (blood cultures) positive for yeast (n=33 sets) and the results were 100% concordant with those of phenotypic identification carried out concomitantly. The reported assay significantly reduces the time required to identify the presence of C. glabrata and C. krusei in comparison with a conventional phenotypic method, from ~72 to
Resumo:
The therapeutic efficacy of amphotericin B and voriconazole alone and in combination with one another were evaluated in immunodeficient mice (BALB/c-SCID) infected with a fluconazole-resistant strain of Cryptococcus neoformans var. grubii. The animals were infected intravenously with 3 x 10(5) cells and intraperitoneally treated with amphotericin B (1.5 mg/kg/day) in combination with voriconazole (40 mg/kg/days). Treatment began 1 day after inoculation and continued for 7 and 15 days post-inoculation. The treatments were evaluated by survival curves and yeast quantification (CFUs) in brain and lung tissues. Treatments for 15 days significantly promoted the survival of the animals compared to the control groups. Our results indicated that amphotericin B was effective in assuring longest-term survival of infected animals, but these animals still harbored the highest CFU of C. neoformans in lungs and brain at the end of the experiment. Voriconazole was not as effective alone, but in combination with amphotericin B, it prolonged survival for the second-longest time period and provided the lowest colonization of target organs by the fungus. None of the treatments were effective in complete eradication of the fungus in mice lungs and brain at the end of the experiment.
Resumo:
Forty Cryptococcus gattii strains were submitted to antifungal susceptibility testing with fluconazole, itraconazole, amphotericin B and terbinafine. The minimum inhibitory concentration (MIC) ranges were 0.5-64.0 for fluconazole, < 0.015-0.25 for itraconazole, 0.015-0.5 for amphotericin B and 0.062-2.0 for terbinafine. A bioassay for the quantitation of fluconazole in murine brain tissue was developed. Swiss mice received daily injections of the antifungal, and their brains were withdrawn at different times over the 14-day study period. The drug concentrations varied from 12.98 to 44.60 mu g/mL. This assay was used to evaluate the therapy with fluconazole in a model of infection caused by C. gattii. Swiss mice were infected intracranially and treated with fluconazole for 7, 10 or 14 days. The treatment reduced the fungal burden, but an increase in fungal growth was observed on day 14. The MIC for fluconazole against sequential isolates was 16 mu g/mL, except for the isolates obtained from animals treated for 14 days (MIC = 64 mu g/mL). The quantitation of cytokines revealed a predominance of IFN-gamma and IL-12 in the non-treated group and elevation of IL-4 and IL-10 in the treated group. Our data revealed the possibility of acquired resistance during the antifungal drug therapy.
Resumo:
P>Although photodynamic therapy (PDT) has shown great promise for the inactivation of Candida species, its effectiveness against azole-resistant pathogens remains poorly documented. This in vitro study describes the association of Photogem (R) (Photogem, Moscow, Russia) with LED (light emitting diode) light for the photoinactivation of fluconazole-resistant (FR) and American Type Culture Collection (ATCC) strains of Candida albicans and Candida glabrata. Suspensions of each Candida strain were treated with five Photogem (R) concentrations and exposed to four LED light fluences (14, 24, 34 or 50 min of illumination). After incubation (48 h at 37 degrees C), colonies were counted (CFU ml-1). Single-species biofilms were generated on cellulose membrane filters, treated with 25.0 mg l-1 of Photogem (R) and illuminated at 37.5 J cm-2. The biofilms were then disrupted and the viable yeast cells present were determined. Planktonic suspensions of FR strains were effectively killed after PDT. It was observed that the fungicidal effect of PDT was strain-dependent. Significant decreases in biofilm viability were observed for three strains of C. albicans and for two strains of C. glabrata. The results of this investigation demonstrated that although PDT was effective against Candida species, fluconazole-resistant strains showed reduced sensitivity to PDT. Moreover, single-species biofilms were less susceptible to PDT than their planktonic counterparts.
Resumo:
Fluconazole, alpha-(2.4-diflurofenil)-alpha-(1H-triazol-1-methyl)-1H-1,2,4-triazol-1-ethanol, is an antifungal of the triazoles class. It shows activity against species of Candida sp. and it is indicated in cases of oropharyngeal candidiasis, esophageal, vaginal, and deep infection. Fluconazole is a selective inhibitor of ergosterol, a steroid exclusive of the cell membrane of fungal cells. Fluconazole is highly absorbed by the gastrointestinal tract and spreads easily by body fluids. The main adverse reactions related to the use of fluconazole are nausea, vomiting, headache, rash, abdominal pain, diarrhea, and alopecia in patients undergoing prolonged treatment with a dose of 400 mg/day. In the form of raw material, pharmaceutical formulations, or biological material, fluconazole can be determined by methods such as titration, spectrophotometry, and thin-layer, gas, and liquid chromatography. This article discusses the pharmacological and physicochemical properties of fluconazole and also the methods of analysis applied to the determination of the drug.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study evaluated in vitro susceptibility testing of dermatophytes isolates from healthy cattle and soil samples against three antifungal agents and three topical veterinarian drugs. Itraconazole and terbinafine showed a higher in vitro fungicidal activity than fluconazole. The veterinarian drugs LEPECID (R) and iodine 5% were more active in vitro than the UNGUENTO (R) spray. All drugs showed fungicidal activity against Microsporum gypseum, and they may be considered as efficient agents for the topical treatment of dermatophytoses in cattle.
Resumo:
Fluconazole, -(2.4-diflurofenil)--(1H-triazol-1-methyl)-1H-1,2,4-triazol-1-ethanol, is an antifungal of triazoles class. It shows activity against species of Candida sp., and it is indicated in cases of oropharyngeal candidiasis, esophageal, vaginal, and deep infection. Fluconazole is a selective inhibitor of ergosterol, a steroid exclusive of the cell membrane of fungal cells. Fluconazole is highly absorbed by the gastrointestinal tract, and it spreads easily by body fluids. The main adverse reactions related to the use of fluconazole are nausea, vomiting, headache, rash, abdominal pain, diarrhea, and alopecia in patients undergoing prolonged treatment with a dose of 400 mg/day. In the form of raw material, pharmaceutical formulations, or biological material, fluconazole can be determined by methods such as titration, spectrophotometry, and thin-layer, gas, and liquid chromatography. This article discusses the pharmacological and physical-chemical properties of fluconazole and also the methods of analysis applied to the determination of the drug.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)