389 resultados para FLAVONOID HETEROSIDES
Resumo:
Parahancornia fasciculata (Poir.) Benoist (Apocynaceae), também conhecida como Parahancornia amapa (Hub.) Ducke, é uma espécie vegetal empregada popularmente no tratamento da malária, infecções no útero, gastrite, anemia, problemas respiratórios, entre outros. Os objetivos do presente trabalho foram realizar o estudo fitoquímico, avaliar a toxicidade oral aguda e a atividade antimalárica in vitro e in vivo de extratos, frações e substância isolada obtidas a partir de cascas do caule de P. fasciculata. Foram realizados dois tipos de extrações com o pó das cascas de P. fasciculata, por maceração / percolação, com etanol 96°GL e diclorometano, esta última tendo sido realizada a com o pó das cascas alcalinizado com hidróxido de amônio, obtendo-se os extratos secos EEPF e EDAPF, respectivamente. Uma terceira extração foi realizada a partir do EEPF por aquecimento sob refluxo, sucessivamente, com Hex:DCM (1:1), AcOEt:DCM (1:1) e AcOEt. EEPF foi, também, submetido a fracionamento por extrações ácido-base resultando nas frações de neutros (EEPFN) e de alcalóides (EEPFA). A prospecção fitoquímica realizada com o EEPF foi desenvolvida por CCD em cromatoplacas de sílica gel tendo sido detectada a presença de triterpenos, esteróides, heterosídeos flavônicos, saponinas, polifenóis, taninos, heterosídeos antracênicos e heterosídeos cardiotônicos. EDAPF foi submetido à cromatografia em coluna de sílica gel. Foram recolhidas 30 frações sendo que as frações Fr1-3, Fr4, Fr5-7 e Fr11 concentraram a maior parte da massa do extrato cromatografado. Da Fr5-7 foi isolada uma mistura de ésteres do lupeol que representam os componentes majoritários do EDAPF. Esta fração passou por um processo de hidrólise alcalina e o produto obtido (Fr5-7Hid) foi analisado por espectrometrias no IV, RMN de 1H e 13C e foi identificado como o triterpeno lupeol. A fração insolúvel em AcOEt obtida a partir do EEPF, por aquecimento sob refluxo, apresentou resultado positivo para o teste de proantocianidinas e foi submetido a doseamento desta classe de metabólitos. Os resultados foram expressos em porcentagem dos teores para a amostra não diluída (10,46±0,3419%), amostra diluída a 1:10 (9,94± 0,1598%) e amostra diluída a 1:100 (10,55± 0,9299%). A avaliação da atividade antiplasmódica in vitro em culturas de cepas W2 de Plasmodium falciparum foi realizada pelo teste da Proteína II Rica em Histidina (HRP-II) tendo sido testados EEPF, EEPFN, EEPFA, Fr1-3, Fr4, Fr5-7(ésteres do lupeol), Fr11 e o Fr5-7Hid (lupeol). Os melhores resultados obtidos foram para EEPF, EEPFA E EEPFN (CI50= ~ 50 μg/mL) sendo considerados moderadamente ativos. As demais amostras apresentaram CI50 > 50 μg/mL e foram consideradas inativas. Realizou-se também a avaliação da atividade antimalárica in vivo em camundongos fêmeas suíços infectados com cepas ANKA de P. berghei com o EEPF e o EEPF-HEX:DCM (1:1) em concentrações de 500, 250 e 125mg/kg de peso. EEPF foi parcialmente ativo, somente no 8° dia, em todas as concentrações. Já EEPF-HEX:DCM (1:1) foi parcialmente ativo na dose de 500mg/kg de peso e nas demais doses foi inativo. O teste de toxicidade oral aguda foi realizado em camundongos fêmeas suíços, pelo método da dose fixa (5.000mg/kg), com EEPF e não apresentou nenhum sinal de toxicidade evidente, o que foi confirmado pela ausência de alterações nos exames anátomohistopatológicos realizados.
Resumo:
Equisetum giganteum L. (E. giganteum), Equisetaceae, commonly called giant horsetail, is an endemic plant of Central and South America and is used in traditional medicine as diuretic and hemostatic in urinary disorders and in inflammatory conditions among other applications. The chemical composition of the extract EtOH 70% of E. giganteum has shown a clear presence of phenolic compounds derived from caffeic and ferulic acids and flavonoid heterosides derived from quercitin and kaempferol, in addition to styrylpyrones. E. giganteum, mainly at the highest concentrations, showed antimicrobial activity against the relevant microorganisms tested: Escherichia coli, Staphylococcus aureus, and Candida albicans. It also demonstrated antiadherent activity on C. albicans biofilms in an experimental model that is similar to dentures. Moreover, all concentrations tested showed anti-inflammatory activity. The extract did not show cytotoxicity in contact with human cells. These properties might qualify E. giganteum extract to be a promising alternative for the topic treatment and prevention of oral candidiasis and denture stomatitis.
Resumo:
Copaifera langsdorffii Desf. commonly known as "copaiba", produce a commercially valuable oil-resin that is extensively used in folk medicine for anti-inflammatory, antimicrobial and antiseptic purposes. We have found the hydroalcoholic extract of this plant leaf has the potential to treat urolithiasis, a problem affecting similar to 7% of the population. To isolate the functional compounds C. langsdorffii leaves were dried, ground, and macerated in a hydroalcoholic solution 7:3 to produce a 16.8% crude extract after solvent elimination. Urolithiasis was induced by introduction of a calcium oxalate pellet (CaOx) into the bladders of adult male Wistar rats. The treated groups received the crude extract by oral gavage at 20 mg/kg body weight daily for 18 days. Extract treatment started 30 days after CaOx seed implantation. To monitor renal function sodium, potassium and creatinine concentrations were analyzed in urine and plasma, and were found to be in the normal range. Analyses of pH, magnesium, phosphate, calcium, uric acid, oxalate and citrate levels were evaluated to determine whether the C. langsdorffii extract may function as a stone formation prevention agent. The HPLC analysis of the extract identified flavonoids quercitrin and afzelin as the major components. Animals treated with C. langsdorffii have increased levels of magnesium and decreased levels of uric acid in urinary excretions. Treated animals have a significant decrease in the mean number of calculi and a reduction in calculi mass. Calculi taken from extract treated animals were more brittle and fragile than calculi from untreated animals. Moreover, breaking calculi from untreated animals required twice the amount of pressure as calculi from treated animals (6.90 +/- A 3.45 vs. 3.00 +/- A 1.51). The extract is rich in flavonoid heterosides and other phenolic compounds. Therefore, we hypothesize this class of compounds might contribute significantly to the observed activity.
Resumo:
Background Flavonoids such as anthocyanins, flavonols and proanthocyanidins, play a central role in fruit colour, flavour and health attributes. In peach and nectarine (Prunus persica) these compounds vary during fruit growth and ripening. Flavonoids are produced by a well studied pathway which is transcriptionally regulated by members of the MYB and bHLH transcription factor families. We have isolated nectarine flavonoid regulating genes and examined their expression patterns, which suggests a critical role in the regulation of flavonoid biosynthesis. Results In nectarine, expression of the genes encoding enzymes of the flavonoid pathway correlated with the concentration of proanthocyanidins, which strongly increases at mid-development. In contrast, the only gene which showed a similar pattern to anthocyanin concentration was UDP-glucose-flavonoid-3-O-glucosyltransferase (UFGT), which was high at the beginning and end of fruit growth, remaining low during the other developmental stages. Expression of flavonol synthase (FLS1) correlated with flavonol levels, both temporally and in a tissue specific manner. The pattern of UFGT gene expression may be explained by the involvement of different transcription factors, which up-regulate flavonoid biosynthesis (MYB10, MYB123, and bHLH3), or repress (MYB111 and MYB16) the transcription of the biosynthetic genes. The expression of a potential proanthocyanidin-regulating transcription factor, MYBPA1, corresponded with proanthocyanidin levels. Functional assays of these transcription factors were used to test the specificity for flavonoid regulation. Conclusions MYB10 positively regulates the promoters of UFGT and dihydroflavonol 4-reductase (DFR) but not leucoanthocyanidin reductase (LAR). In contrast, MYBPA1 trans-activates the promoters of DFR and LAR, but not UFGT. This suggests exclusive roles of anthocyanin regulation by MYB10 and proanthocyanidin regulation by MYBPA1. Further, these transcription factors appeared to be responsive to both developmental and environmental stimuli.
Resumo:
A simple, inexpensive and sensitive kinetic spectrophotometric method was developed for the simultaneous determination of three anti-carcinogenic flavonoids: catechin, quercetin and naringenin, in fruit samples. A yellow chelate product was produced in the presence neocuproine and Cu(I) – a reduction product of the reaction between the flavonoids with Cu(II), and this enabled the quantitative measurements with UV–vis spectrophotometry. The overlapping spectra obtained, were resolved with chemometrics calibration models, and the best performing method was the fast independent component analysis (fast-ICA/PCR (Principal component regression)); the limits of detection were 0.075, 0.057 and 0.063 mg L−1 for catechin, quercetin and naringenin, respectively. The novel method was found to outperform significantly the common HPLC procedure.
Resumo:
Background: Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. Results: A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316bp. Variety IW had the highest SNP frequency (one SNP every 258bp) while KP and NDM had similar frequencies (one SNP every 369bp and 360bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. Conclusions: The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango. © 2015 Hoang et al.
Resumo:
We report a special, hitherto-unexplored property of (-)-epigallocatechin gallate (EGCG) as a chiral solvating agent for enantiodiscrimination of alpha-amino acids in the polar solvent DMSO. This phenomenon has been investigated by H-1 NMR spectroscopy. The mechanism of the interaction property of EGCG with alpha-amino acids has been understood as arising out of hydrogen-bonded noncovalent interactions, where the -OH groups of two phenyl rings of EGCG play dominant roles. The conversion of the enantiomeric mixture into diastereomers yielded well-resolved peaks for D and L amino acids permitting the precise measurement of enantiomeric composition. Often one encounters complex situations when the spectra are severely overlapped or partially resolved hampering the testing of enantiopurity and the precise measurement of enantiomeric excess (ee). Though higher concentration of EGCG yielded better discrimination, the use of lower concentration being economical, we have exploited an appropriate 2D NMR experiment in overcoming such problems. Thus, in the present study we have successfully demonstrated the utility of the bioflavonoid (-)-EGCG, a natural product as a chiral solvating agent for the discrimination of large number of alpha-amino acids in a polar solvent DMSO. Another significant advantage of this new chiral sensing agent is that it is a natural product and does not require tedious multistep synthesis unlike many other chiral auxiliaries.
Resumo:
Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to -5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy.
Flavonoid Composition and Antioxidant Activity of Tree Peony (Paeonia Section Moutan) Yellow Flowers
Resumo:
The non-covalent complexes between three flavonoid glycosides (quercitrin, hyperoside and rutin) and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CD) were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The 1:1 complexation of each flavonoid glycoside (guest) to the DM-beta-CD (host) was monitored in the negative ion mode by mixing each guest with an up to 30-fold molar excess of the host. The binding constants for all complexes were calculated by a linear equation in the order: DM-beta-CD:quercitrin > DM-beta-CD:rutin > DM-beta-CD:hyperoside. A binding model for the complexes has also been proposed based on the binding constants and tandem mass spectrometric data of these complexes.
Resumo:
Four flavonoids from leaves of Acanthopanax Senticosus Harms were observed in negative ion mode in the electrospray mass spectra. Two of them were further isolated and identified as quercitrin (quercetin-3-O-alpha-L-rhamnoside) and hyperin (quercetin-3-O-beta-D-galactoside) on the basis of MS' and NMR data. The other two compounds in the mixtures were tentatively established as quercetin and rutin (quercetin-3-O-rutinoside) in terms of their electrospray tandem mass spectrometry (ESI-MSn) data. Three of the four flavonoids (excluding hyperin) haven't been reported in this plant before.
Resumo:
Three known flavonoids, quercetin, quercitrin (quercetin-3-0-rhamnoside) and rutin (quercetin-3-0-rutinoside), have been identified for the first time in the leaves of Acanthopanax senticosus Harms by using electrospray tandem mass spectrometry techniques (ESI-MSn). The flavonoid hyperin (quercetin-3-0-beta-galactoside), already known to be present, was also investigated. The diagnostic fragment ions of the aglycone quercetin were obtained in the ESI-MSn experiments, and a fragmentation mechanism proposed.